336 resultados para Nanocomposites. Nanographite. Epoxy. Expanded graphite. Microwave
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
The success of manufacturing composite parts by liquid composite molding processes with RTM depends on tool designs, efficient heat system, a controlled injection pressure, a stabilized vacuum system, besides of a suitable study of the preform lay-up and the resin system choice. This paper reports how to assemble a RTM system in a laboratory scale by specifying heat, injection and vacuum system. The design and mold material were outlined by pointing out its advantages and disadvantages. Four different carbon fiber fabrics were used for testing the RTM system. The injection pressure was analyzed regarding fiber volume content, preform compression and permeability, showing how these factors can affect the process parameters. The glass transition temperature (Tg) around 203 ºC matched with the aimed temperature of the mold which ensured good distribution of the heat throughout the upper and lower mold length. The void volume fraction in a range of 2% confirmed the appropriate RTM system and parameters choice.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Due to the low radiopacity of Sealer 26, iodoform is frequently empirically added to this sealer. Thus, the interference of this procedure with the physicochemical properties of Sealer 26 must be evaluated. Objective: This study evaluated the influence of the addition of iodoform on setting time, flow, solubility, pH, and calcium release of an epoxy-based sealer. Material and Methods: The control group was pure Sealer 26, and the experimental groups were Sealer 26 added with 1.1 g, 0.55 g or 0.275 g of iodoform. Setting time evaluation was performed in accordance with the ASTM C266-03 speciflcation. The analysis of flow and solubility was in accordance with the ISO 6876-2001 speciflcation. For the evaluation of pH and calcium ion release, polyethylene tubes were filled with the materials and immersed in flasks with 10 ml of deionized water. After 24 h, 7, 14, 21, 28, and 45 days pH was measured. In 45 days, the calcium released was evaluated with an atomic absorption spectrophotometer. Results: The addition of iodoform increased setting time in comparison with pure sealer (P < 0.05). As for flow, solubility, and calcium release, the mixtures presented results similar to pure sealer (p > 0.05). In the 24 h period, the mixture with 1.1 g and 0.55 g of iodoform showed lower pH than pure sealer and than sealer added with 0.275 g of iodoform (P < 0.05). Conclusions: The iodoform added to Sealer 26 interferes with its setting time and solubility properties. Further studies are needed to address the clinical signiflcance of this interference.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)