297 resultados para Hadron
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this work is to explore the possibility to discover a fermionic field with mass dimension one, the Elko field, in the 14 TeV Large Hadron Collider (LHC), in processes with missing energy and one jet. We explore the possibility of a triple coupling with the Higgs field, generating also a contribution to the Elko mass term, and suggest some possibilities for future studies in this field.
Resumo:
In a finite size bag like picture consisting of quarks (2 flavour) and gluons with SU(3) colour singlet restriction on the partition function and the chemical potential μ ≠ 0 with the constraint that the baryon number b = 0 and b = 1 for mesons and baryons, respectively we find a very good agreement with baryon density of states upto 2 GeV and with mesonic ones upto 1.3 GeV. Similar to a hadron-scale string theory our calculation also suggests that beyond 1.3 GeV there should exist exotic mesons.
Resumo:
We compute the tree level cross section for gluon-gluon elastic scattering taking into account a dynamical gluon mass, and show that this mass scale is a natural regulator for this subprocess cross section. Using an eikonal approach in order to examine the relationship between this gluon-gluon scattering and the elastic pp and (p) over barp channels, we found that the dynamical gluon mass is of the same order of magnitude as the ad hoc infrared mass scale m(0) underlying eikonalized QCD-inspired models. We argue that this correspondence is not an accidental result, and that this dynamical scale indeed represents the onset of nonperturbative contributions to the elastic hadron-hadron scattering. We apply the eikonal model with a dynamical infrared mass scale to obtain predictions for sigma(tot)(pp,(p) over barp), rho(pp,(p) over barp), slope B-pp,B-(p) over barp, and differential elastic scattering cross section d sigma((p) over barp)/dt at Tevatron and CERN-LHC energies.
Resumo:
For large values of the minimal supergravity model parameter tan beta, the tau lepton and the bottom quark Yukawa couplings become large, leading to reduced masses of tau sleptons and b squarks relative to their first and second generation counterparts, and to enhanced decays of charginos and neutralinos to tau leptons and b quarks. We evaluate the reach of the CERN Large Hadron Collider (LHC) pp collider for supersymmetry in the MSUGRA model parameter space. We find that values of m((g) over tilde) similar to 1500-2000 GeV can be probed with just 10 fb(-1) of integrated luminosity for tan beta values as high as 45, so that MSUGRA cannot escape the scrutiny of LHC experiments by virtue of having a large value of tan beta. We also perform a case study of an MSUGRA model at tan beta = 45 where (Z) over tilde(2)-->tau<(tau)over tilde>(1) and (W) over tilde(1)-->tau(1)nu(tau) with similar to 100% branching fraction. In this case, at least within our simplistic study, we show that a di-tau mass edge, which determines the value of m((Z) over tilde 2) - m((Z) over tilde 1), can still be reconstructed. This information can be used as a starting point for reconstructing SUSY cascade decays on an event-by-event basis, and can provide a strong constraint in determining the underlying model parameters. Finally, we show that for large tan beta, there can be an observable excess of tau leptons, and argue that tau signals might serve to provide new information about the underlying model framework. [S0556-2821(99)04205-8].
Resumo:
Higgs bosons can have a substantial invisible branching ratio in many extensions of the Standard Model, such as models where the Higgs bosons decay predominantly into light or massless weakly interacting Goldstone bosons. In this work, we examine the production mechanisms and backgrounds for invisibly decaying Higgs bosons at the Next Linear e+e- Collider operating in the modes e+e-, eγ, and γγ. We demonstrate that such machine is much more efficient to survey for invisibly decaying Higgs bosons than the Large Hadron Collider at CERN.
Resumo:
Nuclear medium effects in the neutrino cooling of neutron stars through the reaction channel γγ→π0 →ν Rν̄L(νLν̄R) are incorporated. Throughout the paper we discuss different possibilities of right-handed neutrinos, massive left-handed neutrinos, and standard massless left-handed neutrinos (reaction is then allowed only with medium modified vertices). It is demonstrated that multiparticle effects suppress the rate of this reaction channel in the dense hadron matter by 6-7 orders of magnitude that does not allow to decrease existing experimental upper limit on the corresponding π0νν̄ coupling. Other possibilities of the manifestation of the given reaction channel in different physical situations, e.g., in the quark color superconducting cores of the most massive neutron stars, are also discussed. We demonstrate that in the color-flavor-locked superconducting phase for temperatures T≲ 0.1-10 MeV (depending on the effective pion mass and the decay width) the process is feasibly the most efficient neutrino cooling process, although the absolute value of the reaction rate is rather small.