35 resultados para wind generator
Resumo:
Group theoretical-based techniques and fundamental results from number theory are used in order to allow for the construction of exact projectors in finite-dimensional spaces. These operators are shown to make use only of discrete variables, which play the role of discrete generator coordinates, and their application in the number symmetry restoration is carried out in a nuclear BCS wave function which explicitly violates that symmetry. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Broiler production in Brazil has turned into a very competitive activity in the late years. Constant innovation leads to higher productivity maintaining the same cost of production, which is a desirable situation. Lately one characteristic for broiler housing in Brazil has been the increase in birds density requiring the use of controlled environment through the use of fan and fogging systems in order to achieve better birds productive performance. Most Brazilian producer already uses cooling equipment however it is still unknown the right way to control the wind speed and direction towards the birds. This present research has the objective to evaluate the effect of the wind speed on the heat transfer from the birds to the environment for broilers at 27 days old. There was used 200 birds, placed in a wind tunnel measuring 1.10 m high by 1.10m wide x 10.0 m of length, and the birds density varied from 9, 16 and 20 birds/m 2. Two wind speed were simulated 340 rpm (1.0 m/s) and 250 rpm (0.3 m/s). The increase in the wind velocity related to the smaller bird densityled to a higher heat loss and to a more uniform temperature distribution in its exposed areas.
Resumo:
Incentives for using wind power and the increasing price of energy might generate in a relatively short time a scenario where low voltage customers opt to install roof-top wind turbines. This paper focuses on evaluating the effects of such situation in terms of energy consumption, loss reduction, reverse power flow and voltage profiles. Various commercially-available roof-top wind turbines are installed in two secondary distribution circuits considering real-life wind speed data and seasonal load demand. Results are presented and discussed. © 2006 IEEE.
Resumo:
This paper deals with the design and analysis of a Dynamic Voltage Restorer output voltage control. Such control is based on a multiloop strategy, with an inner current PID regulator and an outer P+Resonant voltage controller. The inner regulator is applied on the output inductor current. It will be also demonstrated how the load current behavior may influence in the DVR output voltage, which justifies the need for the resonant controller. Additionally, it will be discussed the application of a modified algorithm for the identification of the DVR voltage references, which is based on a previously presented positive sequence detector. Since the studied three-phase DVR is assumed to be based on three identical H-bridge converters, all the analysis and design procedures were realized by means of single-phase equivalent circuits. The discussions and conclusions are supported by theoretical calculations, nonlinear simulations and some experimental results. ©2008 IEEE.
Resumo:
This paper describes the design and development of a high input power-factor (HPF) AC to AC converter for naval applications using Permanent Magnet Generator (PMG). The proposed converter comprises an isolated three-phase uncontrolled multipulse rectification stage directly connected to a single-phase inverter stage, without the use of DC to DC intermediary stage, resulting in more simplicity for the overall circuitry, assuring robustness, reliability and reduced costs. Furthermore, the multipulse rectifier stage is capable to provide high power factor and input currents with low total harmonic distortion (THD). The output voltage of the PMG varies from 260V rms (220 Hz) to 380V rms (360 Hz), depending on load conditions. The output single-phase inverter stage was designed to operate with wide range of DC bus voltage, maintaining 120V rms, 60 Hz output. Measured total harmonic distortion for the AC output voltage represents less than 2%, at 3.6kW nominal linear load. © 2010 IEEE.
Resumo:
Voltage reference generation is an important issue on electronic power conditioners or voltage compensators connected to the electric grid. Several equipments, such as Dynamic Voltage Restorers (DVR), Uninterruptable Power Supplies (UPS) and Unified Power Quality Conditioners (UPQC) need a proper voltage reference to be able to compensate electric network disturbances. This work presents a new reference generator's algorithm, based on vector algebra and digital filtering techniques. It is particularly suited for the development of voltage compensators with energy storage, which would be able to mitigate steady state disturbances, such as waveform distortions and unbalances, and also transient disturbances, like voltage sags and swells. Simulation and experimental results are presented for the validation of the proposed algorithm. © 2011 IEEE.
Resumo:
Synchronous generators are essential components of electric power systems. They are present both in hydro and thermal power plants, performing the function of converting mechanical into electrical energy. This paper presents a visual approach to manipulate parameters that affect operation limits of synchronous generators, using a specifically designed software. The operating characteristics of synchronous generators, for all possible modes of operation, are revised in order to link the concepts to the graphic objects. The approach matches the distance learning tool requirements and also enriches the learning process by developing student trust and understanding of the concepts involved in building synchronous machine capability curves. © 2012 IEEE.
Resumo:
Based on the framework of the Conservative Power Theory (CPT), this paper proposes some compensation strategies for shunt current compensators. CPT current decompositions result in several current-related terms associated with specific load characteristics, such as power consumption, energy storage, unbalances and load nonlinearities. These current components are decoupled (orthogonal) from each other and are used here to define different compensation strategies, which can be selective in minimizing particular effects of disturbing loads. Compensation strategies for single- and three-phase four-wire circuits are also considered. Simulated and experimental results are described to validate the possibilities and performance of the proposed strategies. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Each year, there is an increase in pesticide consumption and in its importance of use in the large-scale agricultural production, being fundamental the knowledge of application technology to the activity success. The objective of the present study was to evaluate the influence of working pressure on the drift generated by different spray nozzles, assessed in wind tunnel. The treatments were composed of two spray nozzles AXI 110015 and AXI 11002 with pressure levels of 276 and 414 kPa. The spray solution was composed by water and NaCl at 10%. The applications were conducted at wind speed of 2.0 m s-1, being the drift collected at 5.0; 10.0 and 15.0 m away from the spray boom and at heights of 0.2; 0.4; 0.6; 0.8 e 1.0 m from the tunnel floor. To both spray nozzles, the greatest drift was collected at the smallest distance to the spray-boom and at the lowest height. The AXI 11002 nozzle gave a smaller drift relative to the AXI 110015 nozzle for the two tested pressures and for all the collection points. Regardless of the nozzle, a rise in the working pressure increases the spray drift percentage at all distances in the wind tunnel.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We extend the Miles mechanism of wind-wave generation to finite depth. A beta-Miles linear growth rate depending on the depth and wind velocity is derived and allows the study of linear growth rates of surface waves from weak to moderate winds in finite depth h. The evolution of beta is plotted, for several values of the dispersion parameter kh with k the wave number. For constant depths we find that no matter what the values of wind velocities are, at small enough wave age the beta-Miles linear growth rates are in the known deep-water limit. However winds of moderate intensities prevent the waves from growing beyond a critical wave age, which is also constrained by the water depth and is less than the wave age limit of deep water. Depending on wave age and wind velocity, the Jeffreys and Miles mechanisms are compared to determine which of them dominates. A wind-forced nonlinear Schrodinger equation is derived and the Akhmediev, Peregrine and Kuznetsov-Ma breather solutions for weak wind inputs in finite depth h are obtained.
Resumo:
The evolution of surface water waves in finite depth under wind forcing is reduced to an antidissipative Korteweg-de Vries-Burgers equation. We exhibit its solitary wave solution. Antidissipation accelerates and increases the amplitude of the solitary wave and leads to blow-up and breaking. Blow-up occurs in finite time for infinitely large asymptotic space so it is a nonlinear, dispersive, and antidissipative equivalent of the linear instability which occurs for infinite time. Due to antidissipation two given arbitrary and adjacent planes of constant phases of the solitary wave acquire different velocities and accelerations inducing breaking. Soliton breaking occurs in finite space in a time prior to the blow-up. We show that the theoretical growth in amplitude and the time of breaking are both testable in an existing experimental facility.
Resumo:
The energy crisis has affected many countries. With the growing warning with the emission in the atmosphere and the lack of resources, the seek for sustainable sources for energy genaration have become even bigger. Some Countries, as Germany, started first in this journey, creating an incentive program to self-generation with renewable sources (wind, photovoltaics, biomass, etc.), giving priority for smaller plants. In Germany the program called EEG started in 2004. In Brazil, since the beggining of 2012, the self-generators did not know how they could be beneficted for self-generation, and self-generation didn't become commun in the country. However, with NR 482, of April 17th, 2012, the parameters were defined, and the self-generator could have a guideline. Therewith, studyies can be redirected for a better knowlegde of the conditions the self-generator will be sujected, in addition to Germany's case as reference to compare with Brazil's case. In this paper these studies are made, focused in wind power (wind turbines) and photovoltaic panels
Singular value analyses of voltage stability on power system considering wind generation variability
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS