59 resultados para wear strengthening and toughening
Resumo:
Nesse trabalho, procurou-se estudar os mecanismos de desgaste de diversas geometrias de ferramentas cerâmicas (Al2O3 + SiCw e Al2O3 + TiC) e ferramentas de PCBN. Para isto foram realizados ensaios de torneamento com alta velocidade de corte em uma superliga à base de níquel (Waspaloy) com dureza de aproximadamente 40 HRC sob condição de corte a seco. As superligas são conhecidas como materiais de difícil usinabilidade devido à alta dureza, alta resistência mecânica em alta temperatura, afinidade para reagir com materiais da ferramenta e baixa condutividade térmica. Os resultados mostraram que o material da ferramenta e a geometria influenciaram o comportamento dos mecanismos de desgaste. de uma maneira geral, o tipo de desgaste dominante foi o de entalhe e os mecanismos foram abrasão, attrition (aderência com arrastamento) e provável difusão na maioria das ferramentas utilizadas.
Resumo:
Objectives. This paper attempts to provide critical perspectives on common in vitro research methodologies, including shear bond testing, wear testing, and load-to-failure tests. Origins of interest in high-quality laboratory data is reviewed, in vitro data is categorized into property and simulation protocols, and two approaches are suggested for establishing clinical validity. It is hoped that these insights will encourage further progress toward development of in vitro tests that are validated against clinical performance and/or by producing clinically validated failure or damage mechanisms.Materials and methods. Published shear and tensile bond data (macro and micro) is examined in light of published finite element analyses (FEA). This data is subjected to a Weibull scaling analysis to ascertain whether scaling is consistent with failure from the bonded interface or not. Wear tests results are presented in light of the damage mechanism(s) operating. Quantitative wear data is re-examined as being dependent upon contact pressure. Load-to-failure test results are re-analyzed by calculating contact stresses at failure for 119 tests from 54 publications over more than 25 years.Results. FEA analyses and reported failure modes (adhesive, mixed, cohesive) are consistent with failure not involving interfacial "shear stresses" as calculated in published work. Weibull scaling clearly suggests failure involving external surfaces of specimens, not interfacial origins. Contact stresses (pressures) are clearly an important variable in wear testing and are not well-controlled in published work. Load-to-failure tests create damage not seen clinically due to excessively high contact stresses. Most contact stresses in the 119 tests examined were calculated to be between 1000 MPa and 5000 MPa, whereas clinical contact stresses at wear facets have been measured not to exceed 40 MPa.Conclusions. Our community can do a much better job of designing in vitro tests that more closely simulate clinical conditions, especially when contact is involved. Journals are encouraged to thoughtfully consider a ban on publishing papers using bond tests and load-to-failure methods that are seriously flawed and have no clinical relevance. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
During gray cast iron cutting, the great rate of mechanical energy from cutting forces is converted into heat. Considerable heat is generated, principally in three areas: the shear zone, rake face and at the clearance side of the cutting edge. Excessive heat will cause undesirable high temperature in the tool which leads to softening of the tool and its accelerated wear and breakage. Nowadays the advanced ceramics are widely used in cutting tools. In this paper a composition special of Si3N4 was sintering, characterized, cut and ground to make SNGN120408 and applyed in machining gray cast iron with hardness equal 205 HB in dry cutting conditions by using digital controlled computer lathe. The tool performance was analysed in function of cutting forces, flank wear, temperature and roughness. Therefore metal removing process is carried out for three different cutting speeds (300 m/min, 600 m/min, and 800 m/min), while a cutting depth of 1 mm and a feed rate of 0.33 mm/rev are kept constant. As a result of the experiments, the lowest main cutting force, which depends on cutting speed, is obtained as 264 N at 600 m/min while the highest main cutting force is recorded as 294 N at 300 m/min.
Turning of compacted graphite iron using commercial tiN coated Si 3N4 under dry machining conditions
Resumo:
Due to their high hardness and wear resistance Si3N4 based ceramics are one of the most suitable cutting tool materials for machining hardened materials. Therefore, their high degree of brittleness usually leads to inconsistent results and sudden catastrophic failures. Improvement of the functional properties these tools and reduction of the ecological threats may be accomplished by employing the technology of putting down hard coatings on tools in the state-of-the-art PVD processes, mostly by improvement of the tribological contact conditions in the cutting zone and by eliminating the cutting fluids. However in this paper was used a Si3N4 based cutting tool commercial with a layer TiN coating. In this investigation, the performance of TiN coating was assessed on turning used to machine an automotive grade compacted graphite iron. As part of the study were used to characterise the performance of cutting tool, flank wear, temperature and roughness. The results showed that the layer TiN coating failed to dry compacted graphite iron under aggressive machining conditions. However, using the measurement of flank wear technique, the average tool life of was increased by VC=160 m/min.The latter was also observed using a toolmakers microscope and scanning electron microscopy (SEM).
Resumo:
Titanium alloys of Ti-Si-B system were manufactured by blended elemental powder method using Ti, Si and B powders as starting materials. It was found that uniaxial and isostatic pressing followed by hot pressing at around 1000°C, for 20 minutes, provided good densification of such alloys. The physicochemical studies were performed by means of scanning electron microscopy, X-ray diffraction, atomic force microscopy and microindentation/wear tests. The investigations revealed a multiphase microstructure formed mainly by α-titanium, Ti6Si2B, Ti5Si3, TiB and Ti3Si phases. The phase transformations after pressureless sintering at 1200°C was also studied by X-ray diffraction for the Ti-18Si-6B composition. As stated in some other researches, these intermetallics in the α-titanium matrix provide high wear resistance and hardness, with the best wear rate of 0.2 mm3/N.m and the highest hardness of around 1300 HV. © (2012) Trans Tech Publications, Switzerland.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Serviço Social - FCHS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)