75 resultados para transformation induced plasticity steel


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The morphology and evolution of epithelial lesions that developed at a gastrojejunal stoma due to reflux of duodenal contents were compared with MNNG-induced carcinomas in the pyloric mucosa of rats in a long term experiment. Random bred male Wistar rats were given MNNG in drinking water (100 mg/l) for 12 weeks and then one group was submitted to a gastrojejunal anastomosis at the greater curvature in the oxyntic mucosa, Untreated rats underwent either gastrojejunostomy or gastrotomy. The animals were killed at the 24th and 66th weeks of the experiment. The lesions obtained in the pyloric mucosa and in the mucosa of the gastrojejunal stoma were analyzed histologically using hematoxylin and eosin staining and immunohistochemistry for pepsinogen isoenzyme 1. Duodenal reflux induced proliferative lesions at the gastrojejunal junction that increased in incidence and size with time. Histologically they consisted of benign epithelial proliferation of gastric type. No evidence of malignant transformation within the gastric components of the proliferative lesions at the gastrojejunal stoma was observed even at the 66th week, Adenocarcinomas induced by MNNG in the pyloric mucosa increased in size during the experiment and were morphologically and histochemically distinct from the proliferative lesions at the gastrojejunal junction. In conclusion, proliferative lesions at the gastrojejunal stoma stimulated by duodenal reflux are biologically distinct from adenocarcinomas induced by MNNG in the pyloric mucosa. They do not seem to be precursor lesions of gastric carcinogenesis, as they do not undergo malignant transformation even after long-term, up to 66 weeks, follow-up. (C) 1999 Elsevier B.V. Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was undertaken to investigate, by immunohistochermistry, the expression of survivin and inducible nitric oxide synthase during 4NQO-induced rat tongue carcinogenesis. Male Wistar rats were distributed into three groups of 10 animals each and treated with 50 ppm 4NQO solution through their drinking water for 4, 12, and 20 weeks. Ten animals were used as negative control. Although no histopathological abnormalities were induced in the epithelium after 4 weeks of carcinogen exposure, survivin and iNOS were expresssed (P < 0.05) in some cells of the 'normal' oral epithelium. In pre-neoplastic lesions at 12 weeks following carcinogen exposure, the levels of survivin and iNOS were increased (p < 0.05) when compared to negative control, being the strongest effect observed to iNOS. In well-differentiated squamous cell carcinoma induced after 20 weeks of treatment with 4NQO, survivin and iNOS were expressed in some tumor cells. Lack of immunoreactivity for both markers was observed in the negative control group. Taken together, our results support the belief that expression of survivin and iNOS are early events during malignant transformation and conversion of the oral mucosa. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the histological alterations occurred in the periradicular region of rat molars after intentional subluxation using an experimental method to induce dentoalveolar trauma. Eighteen adult male Wistar rats (Rattus norvegicus albinus) were selected for the study. The dentoalveolar trauma was experimentally induced by the application of an occlusogingival force on the occlusal surface of the maxillary right first molar using a tensiometer secured on a fully articulated support with adjustable steel shafts. The animals were assigned to six groups (n = 3), according to the intensity of the force applied to induce trauma: Group I (GI, control) - no force application; Groups II-VI (GII-GVI) - the animals were subjected to 600, 700, 800, 900 and 1000 cN force, respectively. After experimental induction of trauma, the animals were sacrificed by anesthetic overdose and the right maxillas were removed and processed for histological analysis under light microscopy. In the animals of GII, GIII and GIV, the histological alterations were similar to those described for GI. GVI (1000 cN) presented the most severe alterations, with the occurrence of buccal bone plate fracture, alveolar fracture and root fracture, which are not present in mild traumatic injuries like subluxation. The 900 cN force (GV) was capable to produce clinical and histological alterations in the gingival and periodontal tissues compatible with those observed in subluxation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peripheral treatment with cholinergic or adrenergic agonists results in salivation and the possibility of synergy between cholinergic and adrenergic efferent mechanisms in the control of salivation has been proposed. Central injections of the cholinergic agonist pilocarpine also induce salivation, while the effects of central injections of noradrenaline (norepinephrine) are not known. Here (a) the effects of intracerebroventricular (icv) injection of noradrenaline on the salivation induced by icv or intraperitoneal (i.p.) injection of pilocarpine and (b) the receptors involved in the effects of central noradrenaline on pilocarpine-induced salivation were investigated. Male Holtzman rats with a stainless-steel guide cannula implanted into the lateral ventricle were used. Rats were anaesthetized with tribromoethanol (200 mg/kg body weight) and saliva was collected on small, preweighed cotton balls inserted into the animal's mouth. Noradrenaline (40, 80 and 160 nmol/l mul) injected icv reduced the salivary secretion induced by pilocarpine (0.5 mumol/l mul) injected icv. Noradrenaline (80 and 160 nmol/l mul) injected icv also reduced the salivation induced by pilocarpine (4 mumol/kg) injected i.p. Previous treatment with the alpha(2)-adrenergic receptor antagonists RX 821002 (40, 80 and 160 nmol/l mul) or yohimbine (160 and 320 nmol/l mul) abolished the inhibitory effect produced by icv injection of noradrenaline on pilocarpine-induced salivation in rats. Prazosin (alpha(1)-adrenergic receptor antagonist) injected icv did not change the effect of noradrenaline on pilocarpine-induced salivation. Prior icv injection of only RX 821002 (80 or 160 nmol/l mul) or yohimbine (320 nmol/l mul) increased pilocarpine-induced salivation. The results show that (1) contrary to its peripheral effects, noradrenaline acting centrally inhibits cholinergic-induced salivation in rats; (2) central mechanisms involving alpha(2)-adrenergic receptors inhibit pilocarpine-induced salivation. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we investigated the influence of d(CH2)(5)-Tyr (Me)-AVP (A(1) AVP) and [Adamanteanacatyl(1),D-ET-D-Tyr(2), Va1(4), aminobutyril(6) ,As-8,As-9]-AVP 9 (A(2)AVP), antagonists of V-1 and V-2 arginine(8)-vasopressin (AVP) receptors, respectively, as well as the effects of losartan and CGP42112A, antagonists of angiotensin II (ANGII) AT(1) and AT(2), receptors, respectively, on water and 0.3 M sodium intake induced by water deprivation or sodium depletion (furosemide treatment) and enhanced by AVP injected into the medial septal area (N4SA). A stainless steel carmulawas implanted into the medial septal area (NISA) of male Holtzman rats AVP injection enhanced water and sodium intake in a dose-dependent manner. Pretreatment with V-1 antagonist injected into the MSA produced a dose-dependent reduction, whereas prior injection of V-2 antagonist increased, in a dose-dependent manner, the water and sodium responses elicited by the administration of AVP. Both AT(1) and AT(2) antagonists administered into the MSA elicited a concentration-dependent decrease in water and sodium intake induced by AVP, while simultaneous injection of the two antagonists was more effective in decreasing AVP responses. These results also indicate that the increase in water and sodium intake induced by AvT was mediated primarily by MSA AT(1) receptors. (c) 2007 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salivation induced by intraperitoneal (i.p.) injections of pilocarpine (cholinergic agonist) is reduced by intracerebroventricular (i.c.v.) injections of moxonidine (alpha(2) adrenergic and imidazoline receptor agonist). In the present study, we investigated the involvement of central alpha(2) adrenergic receptors in the inhibitory effect of i.c.v. moxonidine on i.p. pilocarpine-induced salivation. Male Holtzman rats with stainless steel cannula implanted into the lateral ventricle (LV) were used. Saliva was collected using pre-weighted small cotton balls inserted into the animal's mouth under ketamine (100 mg kg(-1)) anesthesia. Salivation was induced by i.p. injection of pilocarpine (4 mu mol kg(-1)). Pilocarpine-induced salivation was reduced by i.c.v. injection of moxonidine (10 nmol) and enhanced by i.c.v. injections of either RX 821002 (160 nmol) or yohimbine (320 nmol). The inhibitory effect of i.c.v. moxonidine on pilocarpine-induced salivation was abolished by prior i.c.v. injections of the alpha(2) adrenergic receptor antagonists, RX 821002 (160 nmol) or yohimbine (160 and 320 nmol). The alpha(1) adrenergic receptor antagonist prazosin (320 nmol) injected i.c.v. did not change the effect of moxonidine on pilocarpine-induced salivation. The results suggest that moxonidine acts on central alpha(2) adrenergic receptors to inhibit pilocarpine-induced salivation, and that this salivation is tonically inhibited by central alpha(2) adrenergic receptors. (C) 2002 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 Nitric oxide (NO) and alpha(2)-adrenoceptor and imidazoline agonists such as moxonidine may act centrally to inhibit sympathetic activity and decrease arterial pressure.2 In the present study, we investigated the effects of pretreatment with L-NAME ( NO synthesis inhibitor), injected into the 4th ventricle (4th V) or intravenously (i.v.), on the hypotension, bradycardia and vasodilatation induced by moxonidine injected into the 4th V in normotensive rats.3 Male Wistar rats with a stainless steel cannula implanted into the 4th V and anaesthetized with urethane were used. Blood flows were recorded by use of miniature pulsed Doppler flow probes implanted around the renal, superior mesenteric and low abdominal aorta.4 Moxonidine (20 nmol), injected into the 4th V, reduced the mean arterial pressure (-42+/-3 mmHg), heart rate (-22+/-7 bpm) and renal (-62+/-15%), mesenteric (-41+/-8%) and hindquarter (-50+/-8%) vascular resistances.5 Pretreatment with L-NAME (10 nmol into the 4th V) almost abolished central moxonidine-induced hypotension (-10+/-3 mmHg) and renal (-10+/-4%), mesenteric (-11+/-4%) and hindquarter (-13+/-6%) vascular resistance reduction, but did not affect the bradycardia (-18+/-8 bpm).6 the results indicate that central NO mechanisms are involved in the vasodilatation and hypotension, but not in the bradycardia, induced by central moxonidine in normotensive rats. British Journal of Pharmacology (2004).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been shown that the serotonergic mechanisms of the lateral parabrachial nucleus (LPBN) inhibit NaCl intake in different models of angiotensin II (ANG II)-dependent NaCl intake in rats. However, there is no information about the involvement of LPBN serotonergic mechanisms on NaCl intake in a model of NaCl intake not dependent on ANG II like deoxycorticosterone (DOCA)-induced NaCl intake. Therefore, in this study we investigated the effects of bilateral injections of serotonergic agonist and antagonist into the LPBN on DOCA-induced 1.8% NaCl intake in rats. Male Holtzman rats were treated with s.c. DOCA (10 mg/rat each every 3 days). After a period of training, in which the rats had access to 1.8% NaCI during 2 h for several days, the rats were implanted with stainless steel cannulas bilaterally into the LPBN. Bilateral injections of the serotonergic receptor antagonist methysergide (4 mug/0.2 mul each site) in the LPBN increased 1.8% NaCI intake (32.2+/-3.9 versus vehicle: 15.0+/-1.6 ml/2 h, n = 10) and water intake (11.5+/-3.5 versus vehicle: 3.2+/-1.0 ml/2 h). Injections of the serotonergic 5HT(2A/2C) receptor agonist DOI (5 mug/0,2 mul each site) in the LPBN reduced 1.8% NaCl intake (6.8+/-1.7 versus saline: 12.4+/-1.9 ml/2 h, n = 10) and water intake (2.2+/-0.8 versus saline: 4.4+/-1.0 ml/2 h). Besides the previously demonstrated importance for the control of ANG II-dependent water and NaCl intake, the data show that the serotonergic inhibitory mechanisms of the LPBN are also involved in the control of DOCA-induced NaCl intake. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our studies have focused on the effect of L-NG-nitroarginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase (NOS), and L-arginine, the substrate of NOS, on salivary secretion induced by the administration of pilocarpine into the lateral cerebral ventricle (LV) of rats. The present study has also investigated the role of the beta-adrenergic agonists and antagonist injected into LV on the salivary secretion elicited by the injection of pilocarpine into LV. Male Holtzmann rats with a stainless-steel cannula implanted into the LV were used. The amount of salivary secretion was studied over a 7-min period after injection of pilocarpine, isoproterenol, propranolol, salbutamol, salmeterol, L-NAME and L-arginine. The injection of pilocarpine (10, 20, 40, 80 and 160 mug/mul) into LV produced a dose-dependent increase in salivary secretion. The injection of L-NAME (40 mug/mul) into LV alone produced an increase in salivary secretion. The injection of L-NAME into LV previous to the injection of pilocarpine produced an increase in salivary secretion. L-Arginine (30 mug/mul) injected alone into LV produced no change in salivary secretion. L-Arginine injected into LV attenuated pilocarpine-induced salivary secretion. The isoproterenol (40 nmol/mul) injected into LV increased into LV increased the salivary secretion. When injected previous to pilocarpine at a dose of 20 and 40 mug/mul, isoproterenol produced and additive effect on pilocarpine-induced salivary secretion. The 40-nmol/mul dose of propranolol injected alone or previous to pilocarpine into LV attenuated the pilocarpine-induced salivary secretion. The injection of salbutamol (40 nmol/mul), a specific beta-2 agonist, injected alone into LV produced no change in salivary secretion and when injected previous to pilocarpine produced and increase in salivary secretion. The 40-nmol/mul dose of salmeterol, a long-acting beta-2 agonist, injected into LV alone or previous to pilocarpine produced no change in salivary secretion. The results have shown that central injections of L-NAME and L-arginine interfere with the salivary secretion, which implies that might participate in pilocarpine-induced salivary secretion. The interaction between cholinergic and beta-adrenergic receptors of the central nervous system (CNS) for the control of salivary secretion can also be postulated. (C) 2002 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The existence of neural connections between the medial preoptic area (MPOA) and the salivary glands and the increase in salivation by thermal or electrical stimulation of the MPOA have suggested an important role of MPOA in the control of salivary gland function. Although direct cholinergic activation of the salivary glands induces salivation, recent studies have suggested that salivation produced by i.p. pilocarpine may also depend on the activation of central mechanisms. Therefore, in the present study, we investigated the effects of bilateral electrolytic lesions of the MPOA on the salivation induced by i.p. pilocarpine. Adult male Holtzman rats (n = 11-12/group) with bilateral sham or electrolytic lesions of the MPOA were used. One, five, and fifteen days after the brain surgery, under ketamine anesthesia, the salivation was induced by i.p. pilocarpine (1 mg/kg of body weight), and saliva was collected using preweighted small cotton balls inserted into the animal's mouth. Pilocarpine-induced salivation was reduced 1 and 5 days after MPOA lesion (341 +/- 41 and 310 +/- 35 mg/7 min, respectively, vs. sham lesions 428 +/- 32 and 495 +/- 36 mg/7 min, respectively), but it was fully recovered at the 15th day post-lesion (561 +/- 49 vs. sham lesion: 618 27 mg/7 min). Lesions of the MPOA did not affect baseline non-stimulated salivary secretion. The results confirm the importance of MPOA in the control of salivation and suggest that its integrity is necessary for the full sialogogue effect of pilocarpine. However, alternative mechanisms probably involving other central nuclei can replace MPOA function in chronically lesioned rats allowing the complete recovery of the effects of pilocarpine. (c) 2006 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determined the effects of moxonidine and rilmenidine 20 mol (alpha(2)-adrenergic and imidazoline receptor agonists) injected into the medial septal area (MSA) on the pilocarpine-induced salivation, when injected intraperitoneally (i.p.), of male Holtzman rats weighing 250300 g, with stainless-steel cannula implanted into the MSA. The rats were anesthetized with zoletil 50 mg kg(-1) b.wt. (tiletamine chloridrate 125.0 mg and zolazepan chloridrate 125.0 mg) into quadriceps muscle intramuscularly (IM), saliva was collected using pre-weighed small cotton balls inserted in the animal's mouth. The pre-treatment with moxonidine injected into the MSA reduced the salivation induced by pilocarpine (1 mg kg(-1)) injected i.p. (12 +/- 3 mg min(-1)) vs. control (99 +/- 9 mg min(-1)). The pre-treatment with rilmenidine 40 nmol also reduced the salivation induce by pilocarpine injected i.p. (20 +/- 5 mg min(-1)) vs. control (94 +/- 7 mg min(-1)). Idazoxan 40 nmol (imidazoline receptor antagonist) injected into the MSA previous to moxonidine and rilmenidine partially blocked the effect of moxonidine and totally blocked the rilmenidine effect in pilocarpine-induced salivation injected i.p. (60 +/- 8 and 95 +/- 10 mg min(-1), respectively). Yohimbine 40 nmol (alpha(2)-adrenergic receptor antagonist) injected into the MSA previously to moxonidine and rilmenidine partially blocked the moxonidine effect but produced no change on the rilmenidine effect on i.p. pilocarpine-induced salivation (70 +/- 6 and 24 +/- 6 mg min(-1), respectively). Injection of these alpha(2)-adrenergic and imidazoline agonists and antagonists agents i.p. produced no change on i.p. pilocarpine-induced salivation. These results show that central, but not peripheral, injection of alpha(2)-adrenergic and imidazoline agonists' agents inhibit pilocarpine-induced salivation. Idazoxan, an imidazoline receptor antagonist, totally inhibits the rilmenidine effect and partially inhibits the moxonidine effect on pilocarpine-induced salivation. Yohimbine produced no change on rilmenidine effect but partially inhibited the moxonidine effect. Both of these antagonists when injected into the MSA previous to pilocarpine i.p. potentiated the sialogogue effect of pilocarpine. The results suggest that alpha(2)-adrenergic/imidazoline receptor of the MSA when stimulated blocked pilocarpine-induced salivation in rats when injected intraperitonially These receptors of the medial septal area have an inhibitory mechanism on salivary secretion. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cholinergic, agonists activate salivation and the alpha (2)-adrenergic and imidazoline receptor agonists induce opposite effects. In the present study, we investigated the effects of intracerebroventricular (i.c.v.) or intraperitoneal (i.p.) injection of moxonidine (an a-adrenergic and imidazoline receptor agonist) on the salivation induced by the cholinergic agonist pilocarpine. Male Holtzman rats wish stainless steel cannula implanted into the lateral ventricle (LV) were used. In rats anesthetized with tribromoethanol (200 mg kg(-1)), saliva was collected using pre-weighed small cotton balls inserted in the animal's mouth. The treatment with moxonidine (5, 10 and 20 nmol in 1 mul) injected,i.c.v. reduced the salivation induced by pilocarpine (1 mg kg(-1)) injected i.p. (48 +/- 5, 17 +/- 2 and 15 +/- 2 mg min(-1) vs. control, 73 +/- 7 mg min(-1)). The same doses of moxonidine injected i.c.v. also reduced the salivary secretion induced by pilocarpine (500 nmol in 1 mul). injected i.c.v. (44 +/- 1, 14 +/- 2 and 20 +/- 3 mg min(-1) vs. control, 51 +/- 2 mg min(-1)). Injection of moxonidine (20 nmol in 0.1 ml) i.p. produced no chance on i.p. pilocarpine-induced salivation (58 +/- 4 mg min(-1) vs. control, 50 +/- 4 mg min(-1)). The results show that central, but not peripheral, injection of moxonidine inhibit,. pilocarpine-induced salivation, suggesting that central mechanisms activated by alpha (2)-adrenergic/imidazoline agonists inhibit cholinergic-induced salivation in rats. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our studies have focused on the effect of injection of L-NAME and sodium nitroprussiate (SNP) on the salivary secretion, arterial blood pressure, sodium excretion and urinary volume induced by pilocarpine which was injected into the medial septal area (MSA). Rats were anesthetized with urethane (1.25 g/kg b. wt.) and a stainless steel cannula was implanted into their MSA. The amount of saliva secretion was studied over a five-minute period after injection of pilocarpine into MSA. Injection of pilocarpine (10, 20, 40, 80, 160 mug/mul) into MSA produced a dose-dependent increase in salivary secretion. L-NG-nitro arginine methyl-esther (L-NAME) (40 mug/mul), a nitric oxide (NO) synthase inhibitor, was injected into MSA prior to the injection of pilocarpine into MSA, producing an increase in salivary secretion due to the effect of pilocarpine. Sodium nitroprussiate (SNP) (30 mug/mul) was injected into MSA prior to the injection of pilocarpine into MSA attenuating the increase in salivary secretion induced by pilocarpine. Medial arterial pressure (MAP) increase after injections of pilocarpine into the MSA. L-NAME injected into the MSA prior to injection of pilocarpine into MSA increased the MAP. SNP injected into the MSA prior to pilocarpine attenuated the effect of pilocarpine on MAP. Pilocarpine (40 mug/mul) injected into the MAS induced an increase in sodium and urinary excretion. L-NAME injected prior to pilocarpine into the MSA increased the urinary sodium excretion and urinary volume induced by pilocarpine. SNP injected prior to pilocarpine into the MSA decreased the sodium excretion and urinary volume induced by pilocarpine. All these roles of pilocarpine depend on the release of nitric oxide into the MSA. We may also conclude that the MSA is involved with the cholinergic excitatory mechanism that induce salivary secretion, increase in MAP and increase in sodium excretion and urinary volume. (C) 2002 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Male Holtzman rats weighting 200-250 g were anesthetized with zoletil 50 mg/Kg (tiletamine chloridrate 125.0 mg and zolazepan chloridrate 125.0 mg) into quadriceps muscle and stainless steel cannulas were implanted into their supraoptic nucleus (SON). We investigated the effects of the injection into the supraoptic nucleus (SON) of FK 409, a nitric oxide donor, and N(W-)nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor (NOS), on the salivary secretion, arterial blood pressure, sodium excretion and urinary volume induced by pilocarpine, which was injected into SON. The drugs were injected in 0.5 mul volume over 30-60 s. Controls was injected with a similar volume of 0.15 M NaCl. FK 409 and L-NAME were injected at doses of 20 mug/0.5 mul and 40 mug/0.5 mul. respectively. The amount of saliva secretion was studied over a five-minute period after injection of pilocarpine into SON. Injection of pilocarpine (10, 20, 40, 80, 160 mug/mul) into SON produced a dose-dependent increase in salivary secretion. L-NAME was injected into SON prior to the injection of pilocarpine into SON, producing an increase in salivary secretion due to the effect of pilocarpine. FK 409 injected into SON attenuating the increase in salivary secretion induced by pilocarpine. Mean arterial pressure (MAP) increase after injections of pilocarpine into the SON. L-NAME injected into the SON prior to injection of pilocarpine into SON increased the MAP. FK 409 injected into the SON prior to pilocarpine attenuated the effect of pilocarpine on MAP. Pilocarpine (0.5 mumol/0.5 mul) injected into the SON induced an increase in sodium and urinary excretion. L-NAME injected prior to pilocarpine into the SON increased the urinary sodium excretion and urinary volume induced by pilocarpine. FK 409 injected prior to pilocarpine into the SON decreased the sodium excretion and urinary volume induced by pilocarpine. All these roles of pilocarpine depend on the release of nitric oxide into the SON. In summary the present results show: a) SON is involved in pilocarpine-induced salivation; b) that mechanism involves increase in MAP, sodium excretion and urinary volume. (C) 2003 Elsevier B.V. All rights reserved.