19 resultados para temperature aging
Effect of accelerated aging on the microhardness and color stability of flexible resins for dentures
Resumo:
Acrylic resins have been widely used due to their acceptable esthetics and desirable characteristics such as easy handling, good thermal conductivity, low permeability to oral fluids and color stability. Flexible resins were introduced on the market as an alternative to the use of conventional acrylic resins in the construction of complete and partial removable dentures. Although these resins present advantages in terms of esthetics and comfort, studies assessing chromatic and microhardness alterations of these materials are still scarce in the related literature. The aim of this study was to evaluate the chromatic and microhardness alterations of two commercial brands of flexible resins in comparison to the conventional resin Triplex when submitted to accelerated aging. The resins were manipulated according to manufacturers' instructions and inserted into a silicone matrix to obtain 21 specimens divided into 3 groups: Triplex, Ppflex and Valplast. Triplex presented the highest microhardness value (p < 0.05) for all the aging periods, which was significantly different from that of the other resins, followed by the values of Valplast and Ppflex. Comparison between the flexible resins (Ppflex and Valplast) revealed a statistically significant difference (p < 0.05) as regards color. The flexible resin Ppflex and the conventional resin Triplex presented no statistically significant difference (p < 0.05) as regards aging. The accelerated aging significantly increased the microhardness values of the resins, with the highest values being observed for Triplex. Valplast presented the greatest chromatic alteration after accelerated aging.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective. To determine the effects of different aging methods on the degradation and flexural strength of yttria-stabilized tetragonal zirconia (Y-TZP)Methods. Sixty disc-shaped specimens (0, 12 mm; thickness, 1.6 mm) of zirconia (Vita InCeram 2000 YZ Cubes, VITA Zahnfabrik) were prepared (ISO 6872) and randomly divided into five groups, according to the aging procedures (n=10): (C) control; (M) mechanical cycling (15,000,000 cycles/3.8 Hz/200N); (T) thermal cycling (6,000 cycles/5-55 degrees C/30 s); (TM) thermomechanical cycling (1,200,000 cycles/3.8 Hz/200N with temperature range from 5 C to 55 C for 60s each); (AUT) 12h in autoclave at 134 degrees C/2 bars; and (STO) storage in distilled water (37 degrees C/400 days). After the aging procedures, the monoclinic phase percentages were evaluated by X-ray diffraction (XRD), and topographic surface analysis was performed by 3D profilometry. The specimens were then subjected to biaxial flexure testing (1 mm/min, load 100 kgf, in water). The biaxial flexural strength data (MPa) were analyzed by 1-way ANOVA and Tukey's test (alpha = 0.05). The data for monoclinic phase percentage and profilometry (Ra) were analyzed by Kruskal-Wallis and Dunn's tests.Results. ANOVA revealed that flexural strength was affected by the aging procedures (p = 0.002). The M (781.6 MPa) and TM (771.3 MPa) groups presented lower values of flexural strength than did C (955 MPa), AUT (955.8 MPa), T (960.8 MPa) and STO (910.4 MPa). The monoclinic phase percentage was significantly higher only for STO (12.22%) and AUT (29.97%) when compared with that of the control group (Kruskal-Wallis test, p = 0.004). In addition, the surface roughnesses were similar among the groups (p = 0.165).Signcance. Water storage for 400 days and autoclave aging procedures induced higher phase transformation from tetragonal to monoclinic; however, they did not affect the flexural strength of Y-TZP ceramic, which decreased only after mechanical and thermomechanical cycling. (C) 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.