35 resultados para sublethal effects
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fipronil is a neurotoxic insecticide that inhibits the gamma-aminobutyric acid receptor and can affect gustative perception, olfactory learning, and motor activity of the honeybee Apis mellifera. This study determined the lethal dose (LD50) and the lethal concentration (LC50) for Africanized honeybee and evaluated the toxicity of a sublethal dose of fipronil on neuron metabolic activity by way of histochemical analysis using cytochrome oxidase detection in brains from worker bees of different ages. In addition, the present study investigated the recovery mechanism by discontinuing the oral exposure to fipronil. The results showed that mushroom bodies of aged Africanized honeybees are affected by fipronil, which causes changes in metabolism by increasing the respiratory activity of mitochondria. In antennal lobes, the sublethal dose of fipronil did not cause an increase in metabolic activity. The recovery experiments showed that discontinued exposure to a diet contaminated with fipronil did not lead to recovery of neural activity. Our results show that even at very low concentrations, fipronil is harmful to honeybees and can induce several types of injuries to honeybee physiology. © 2012 Springer Science+Business Media New York.
Resumo:
In Brazil, imidacloprid is a widely used insecticide on agriculture and can harm bees, which are important pollinators. The active ingredient imidacloprid has action on the nervous system of the insects. However, little has been studied about the actions of the insecticide on nontarget organs of insects, such as the Malpighian tubules that make up the excretory and osmoregulatory system. Hence, in this study, we evaluated the effects of chronic exposure to sublethal doses of imidacloprid in Malpighian tubules of Africanized Apis mellifera. In the tubules of treated bees, we found an increase in the number of cells with picnotic nuclei, the lost of part of the cell into the lumen, and a homogenization of coloring cytoplasm. Furthermore, we observed the presence of cytoplasmic vacuolization. We confirmed the increased occurrence of picnotic nuclei by using the Feulgan reaction, which showed the chromatin compaction was more intense in the tubules of bees exposed to the insecticide. We observed an intensification of the staining of the nucleus with Xylidine Ponceau, further verifying the cytoplasmic negative regions that may indicate autophagic activity. Additionally, immunocytochemistry experiments showed TUNEL positive nuclei in exposed bees, implicating increased cell apoptosis after chronic imidacloprid exposure. In conclusion, our results indicate that very low concentrations of imidacloprid lead to cytotoxic activity in the Malpighian tubules of exposed bees at all tested times for exposure and imply that this insecticide can alter honey bee physiology. © 2013 Wiley Periodicals, Inc.
Resumo:
As all herbicides act on pathways or processes crucial to plants, in an inhibitory or stimulatory way, low doses of any herbicide might be used to beneficially modulate plant growth, development, or composition. Glyphosate, the most used herbicide in the world, is widely applied at low rates to ripen sugarcane. Low rates of glyphosate also can stimulate plant growth (this effect is called hormesis). When applied at recommended rates for weed control, glyphosate can inhibit rust diseases in glyphosate-resistant wheat and soybean. Fluridone blocks carotenoid biosynthesis by inhibition of phytoene desaturase and is effective in reducing the production of abscisic acid in drought-stressed plants. Among the acetolactate synthase inhibitors, sulfometuron-methyl is widely used to ripen sugarcane and imidazolinones can be used to suppress turf species growth. The application of protoporphyrinogen oxidase inhibitors can trigger plant defenses against pathogens. Glufosinate, a glutamine syntherase inhibitor, is also known to improve the control of plant diseases. Auxin agonists (i.e., dicamba and 2,4-D) are effective, low-cost plant growth regulators. Currently, auxin agonists are still used in tissue cultures to induce somatic embryogenesis and to control fruit ripening, to reduce drop of fruits, to enlarge fruit size, or to extend the harvest period in citrus orchards. At low doses, triazine herbicides stimulate growth through beneficial effects on nitrogen metabolism and through auxin-like effects. Thus, sublethal doses of several herbicides have applications other than weed control.
Resumo:
In this work we have demonstrated the effects of oral administration of Chlorella vulgaris (CV) on Natural Killer cells (NK) activity of mice infected with a sublethal dose of viable Listeria monocytogenes. The treatment with C. vulgaris produced a significant increase on NK cells activity in normal (non-infected) animals compared to the animals that received only vehicle (water) (p < 0.0001). Similarly, the infection alone produced a significant increase on NK cells activity, which was observed at 48 and 72 hours after the inoculation of L. monocytogenes. Moreover, when CV was administered in infected animals, there was an additional increase in NK cells activity which was significantly higher than that found in the infected groups (p < 0.0001) CV treatment (50 and 500mg/Kg) of mice infected with a dose of 3x105 bacteria/animal, which was lethal for all the non- treated controls, produced a dose-response protection which led to a 20% and 55% survival, respectively (p < 0.0001).
Resumo:
Fertility in female mammals may be affected by a variety of endocrine disrupters present in the environment. Herbicide atrazine is an example of endocrine disrupter employed in agriculture, which disrupts estrous cyclicity in rats. Aiming to characterize morphologically the effect of low and sublethal doses of atrazine on the ovaries of Wistar rats, in an effort to determine the possible intrafollicular target site through which this herbicide acts adult females were submitted to both subacute and subchronic treatments. Additionally, immunocytochemical labeling of 90 kDa heat shock protein (HSP90) was performed in order to evaluate the role played by this protein in the ovary, under stressed conditions induced by herbicide exposure. The results indicated that atrazine induced impaired folliculogenesis, increased follicular atresia and HSP90 depletion in female rats submitted to subacute treatment, while the subchronic treatment with low dose of atrazine could compromise the reproductive capacity reflected by the presence of multioocytic follicle and stress-inducible HSP90. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
The development of agricultural activities coincides with the increased use of pesticides to control pests, which can also be harmful to nontarget insects such as bees. Thus, the goal of this work was assess the toxic effects of thiamethoxam on newly emerged worker bees of Apis mellifera (africanized honeybee-AHB). Initially, we determined that the lethal concentration 50 (LC50) of thiamethoxam was 4.28 ng a.i./μL of diet. To determine the lethal time 50 (LT50), a survival assay was conducted using diets containing sublethal doses of thiamethoxam equal to 1/10 and 1/100 of the LC50. The group of bees exposed to 1/10 of the LC50 had a 41.2% reduction of lifespan. When AHB samples were analyzed by morphological technique we found the presence of condensed cells in the mushroom bodies and optical lobes in exposed honeybees. Through Xylidine Ponceau technique, we found cells which stained more intensely in groups exposed to thiamethoxam. The digestive and regenerative cells of the midgut from exposed bees also showed morphological and histochemical alterations, like cytoplasm vacuolization, increased apocrine secretion and increased cell elimination. Thus, intoxication with a sublethal doses of thiamethoxam can cause impairment in the brain and midgut of AHB and contribute to the honeybee lifespan reduction. © 2013 Wiley Periodicals, Inc.
Resumo:
Several synthetic substances are used in agricultural areas to combat insect pests; however, the indiscriminate use of these products may affect nontarget insects, such as bees. In Brazil, one of the most widely used insecticides is imidacloprid, which targets the nervous system of insects. Therefore, the aim of this study was to evaluate the effects of chronic exposure to sublethal doses of imidacloprid on the brain of the Africanized Apis mellifera. The organs of both control bees and bees exposed to insecticide were subjected to morphological, histochemical and immunocytochemical analysis after exposure to imidacloprid, respectively, for 1, 3, 5, 7, and 10 days. In mushroom bodies of bees exposed to imidacloprid concentrations of LD50/10 and in optic lobes of bees exposed to imidacloprid concentrations of LD 50/10, LD50/100, and LD50/50, we observed the presence of condensed cells. The Feulgen reaction revealed the presence of some cells with pyknotic nuclei, whereas Xylidine Ponceau stain revealed strongly stained cells. These characteristics can indicate the occurrence of cell death. Furthermore, cells in mushroom bodies of bees exposed to imidacloprid concentrations of LD50/10 appeared to be swollen. Cell death was confirmed by immunocytochemical technique. Therefore, it was concluded that sublethal doses of imidacloprid have cytotoxic effects on exposed bee brains and that optic lobes are more sensitive to the insecticide than other regions of the brain. © 2013 Springer Science+Business Media New York.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)