23 resultados para speaker recognition systems
Resumo:
The applications of Automatic Vowel Recognition (AVR), which is a sub-part of fundamental importance in most of the speech processing systems, vary from automatic interpretation of spoken language to biometrics. State-of-the-art systems for AVR are based on traditional machine learning models such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), however, such classifiers can not deal with efficiency and effectiveness at the same time, existing a gap to be explored when real-time processing is required. In this work, we present an algorithm for AVR based on the Optimum-Path Forest (OPF), which is an emergent pattern recognition technique recently introduced in literature. Adopting a supervised training procedure and using speech tags from two public datasets, we observed that OPF has outperformed ANNs, SVMs, plus other classifiers, in terms of training time and accuracy. ©2010 IEEE.
Resumo:
In this project, the main focus is to apply image processing techniques in computer vision through an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods as structured heuristics methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained. ©2010 IEEE.
Resumo:
In this paper we propose an accurate method for fault location in underground distribution systems by means of an Optimum-Path Forest (OPF) classifier. We applied the Time Domains Reflectometry method for signal acquisition, which was further analyzed by OPF and several other well known pattern recognition techniques. The results indicated that OPF and Support Vector Machines outperformed Artificial Neural Networks classifier. However, OPF has been much more efficient than all classifiers for training, and the second one faster for classification. © 2011 IEEE.
Resumo:
Nowadays, systems based on biométrie techniques have a wide acceptance in many different areas, due to their levels of safety and accuracy. A biometrie technique that is gaining prominence is the identification of individuals through iris recognition. However, to be proficiently used these systems must process their recognition task as fast as possible. The goal of this work has been the development of an iris recognition method to produce results rapidly, yet without losing the recognition accuracy. The experimental results show that the method is quite promising. © 2012 Taylor & Francis Group.
Resumo:
Grinding is a parts finishing process for advanced products and surfaces. However, continuous friction between the workpiece and the grinding wheel causes the latter to lose its sharpness, thus impairing the grinding results. This is when the dressing process is required, which consists of sharpening the worn grains of the grinding wheel. The dressing conditions strongly affect the performance of the grinding operation; hence, monitoring them throughout the process can increase its efficiency. The objective of this study was to estimate the wear of a single-point dresser using intelligent systems whose inputs were obtained by the digital processing of acoustic emission signals. Two intelligent systems, the multilayer perceptron and the Kohonen neural network, were compared in terms of their classifying ability. The harmonic content of the acoustic emission signal was found to be influenced by the condition of dresser, and when used to feed the neural networks it is possible to classify the condition of the tool under study.
Resumo:
Grinding is a workpiece finishing process for advanced products and surfaces. However, the constant friction between workpiece and grinding wheel causes the latter to lose its sharpness, thereby impairing the result of the grinding process. When this occurs, the dressing process is essential to sharpen the worn grains of the grinding wheel. The dressing conditions strongly influence the performance of the grinding operation; hence, monitoring them throughout the process can increase its efficiency. The purpose of this study was to classify the wear condition of a single-point dresser using intelligent systems whose inputs were obtained by digitally processing acoustic emission signals. Two multilayer perceptron (MLP) neural networks were compared for their classification ability, one using the root mean square (RMS) statistics and another the ratio of power (ROP) statistics as input. In this study, it was found that the harmonic content of the acoustic emission signal is influenced by the condition of the dresser, and that the condition of the tool under study can be classified by using the aforementioned statistics to feed a neural network. © IFAC.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)