52 resultados para solar system : general


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo deste trabalho foi estudar o desempenho produtivo, adaptabilidade e estabilidade fenotípica de seis genótipos de tomateiro na região de Marília, SP. Os experimentos foram conduzidos em nove ambientes (seis sob condições de cultivo protegido e três sob condições de céu aberto), com seis genótipos (Carmen, Diva, Donador, Graziela, Vita e HE-295), em blocos casualizados, com quatro repetições. Ocorreram diferenças significativas entre ambientes, e a média geral dos cultivos protegidos superou a dos cultivos a céu aberto quanto à produtividade, apesar de a média geral dos cultivos a céu aberto ser superior quanto ao peso médio de frutos. As cultivares, à exceção de HE-295, demonstraram alta estabilidade, merecendo destaque as cultivares Carmen, Donador e Vita, que tiveram rendimento médio superior ao da média geral, adaptabilidade geral e comportamento previsível em todos os ambientes estudados. Quanto ao peso médio dos frutos, as cultivares Diva e Vita foram as únicas que mostraram ampla adaptabilidade a todos os ambientes, comportamento previsível, além de apresentarem peso médio do fruto superior ao da média geral.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we focus our attention to the expansion of the disturbing function (R) which governs the dynamics of a satellite (natural or artificial) in the Neptune-Triton system. What makes this problem quite unusual, is the fact that a small inner satellite can be strongly disturbed by Triton which is moving in a highly inclined and retrograde orbit. These features are unique in our solar system. Although a lot of retrograde satellites are currently known, all of them have negligible mass and the), do not offer almost any perturbation on the others satellites. However, in the case of the inner satellites of Neptune, Triton is an interesting exception. In a highly inclined orbit, the perturbation it exerts on the neighbouring satellites of Neptune cannot be ignored even for the present scenario. However, in the future, this perturbation will be much more important because due to the tides, the orbit of Triton is contracting, whereas the semi major axes of the remaining inner satellites of Neptune will remain almost unaffected by the tides. In this work we first obtain the disturbing function in the retrograde case. After that, we generalize R for arbitrary inclination. Several numerical tests are presented and a possible future case of resonant configuration is briefly discussed as well. (c) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some Voyager images showed that the F ring of Saturn is composed of at least four separate, non-intersecting, strands covering about 45 degrees in longitude. According to Murray et al. [Murray, C.D., Gordon, M., Giuliatti Winter, S.M. Unraveling the strands of Saturn's F ring. Icarus 129, 304, 1997.] this structure may be caused by undetected satellites embedded in the gaps.Due to precession, the satellites Prometheus and Pandora and the ring particles can experience periodic close encounters. Giuliatti Winter et al. [Giuliatti Winter, S.M, Murray, C.D., Gordon, M. Perturbations to Saturn's F-ring strands at their closest approach to Prometheus. Plan. Space Sciences, 48, 817, 2000.] analysed the behaviour of these four strands at closest approach with the satellite Prometheus. Their work suggests that Prometheus can induce the ring particles to scatter in the direction of the planet, thus increasing the population of small bodies in this region.In this work we analysed the effects of Prometheus on the radial structure of Saturn's F ring during the Voyager and early Cassini epochs. Our results show that at Voyager epoch Prometheus, and also Pandora, had a negligible influence in the strands. However, during the Cassini encounter Prometheus could affect the strands significantly, scattering particles of the inner strand in the direction of the planet. This process can contribute to the replenishment of material in the region between the F ring and the A ring, where two rings have recently been discovered [Porco, C. et al. Cassini imaging science. Initial results on Saturn's rings and small Satellites. Science, 307, 1226, 2005].We also analyse the behaviour of undetected satellites under the effects of these two satellites by computing the Lyapunov Characteristic Exponent. Our results show that these satellites have a chaotic behaviour which leads to a much more complex scenario. The new satellite S/2004 S6 also presents a chaotic behaviour with can alter the dynamic of the system, since this satellite crosses the orbit of the strands. (C) 2006 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present work is analyzed the contribution of the Moon on the collisional process of the Earth with asteroids (NEOs). The dynamical system adopted is the restricted four-body problem Sun-Earth-Moon-particle. Using a simple analytical approach one can verify that, the orbit of an object can be significantly affected by the Moon's gravitational field when their relative velocity is smaller than 5 km/s. Therefore, the present work is based on hypothetical asteroids whose velocities relative to Moon are of the order of 1 km/s. In fact, there are several real objects (NEOs) with such velocities at the point they cross the Earth's orbit. The net results obtained indicate that the Moon helps to avoid collisions (2.6%) more than it contributes to extra collisions (0.6%). (C) 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The motion of a test particle in the vicinity of exterior resonances is examined in the context of the planar, circular, restricted three-body problem. The existence of asymmetric periodic orbits associated with the 1 : n resonances (where n = 2, 3, 4, 5) is confirmed; there is also evidence of asymmetric resonances associated with larger values of n. A detailed examination of the evolution of the family of orbits associated with the 1:2 resonance shows the sequence that leads to asymmetric libration. on the basis of numerical studies of the phase space it is concluded that the existence of asymmetric libration means that the region exterior to the perturbing mass is more chaotic than the interior region. The apparent absence of 'particles' in 1 : n resonances in the solar system may reflect this inherent bias.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To study the production and propagation of fast secondaries particles in the atmosphere, data collected during eleven quiet-time balloon flights are analysed. Comparisons of these data with those obtained in different geomagnetic rigidity regions permit to estimate the contributions of the proton and electron components in the measured intensities. Derivations of this last component in the «upward» and «downward» moving electrons fluxes indicate that in the anomaly region a fraction of these particles, produced by the primary protons, are leaving the atmosphere and will not return to the Earth. © 1991 Società Italiana di Fisica.