62 resultados para renewable energy system
Resumo:
The steam reforming is one of most utilized process of hydrogen production because of its high production efficiencies and its technological maturity. The use of ethanol for this purpose is a interesting option because this is a renewable and less environmentally offensive fuel. The objective of this study is evaluate the physical-chemical, thermodynamic and environmental analyses of steam reforming of ethanol. whose objective is to produce 0.7 Nm3/h of hydrogen to be used by a PEMFC of l kW. In this physical-chemical analysis, a global reaction of ethanol was considered. That is, the superheated ethanol and steam, at high temperatures, react to produce hydrogen and carbon dioxide. Beyond it's the simplest form to study the steam reforming of ethanol to hydrogen production, it's the case where occurs the highest production of hydrogen (the product to be used by fuel cells) and carbon dioxide, to be eliminated. But this reaction isn't real and depends greatly on the thermodynamic conditions of reforming, technical features of reformer system and catalysts. Other products generally formed (but not investigated in this study) are methane, carbon monoxide, among others. It was observed that the products is commonly produced in the moment when the reaction attains temperatures about 206°C (below this temperature, the reaction trend to the reaetants, that is, from hydrogen and carbon dioxide to steam and ethanol) and the advance degree of this reaction increases when the temperature of reaction also increases and when its pressure decreases. It's suggested reactions at about 600°C or higher. However, when the temperature attains 700°C, the stability of this reaction is occurred, that is, the production of reaction productions attains to the limit, that is the highest possible production. In temperatures above 700°C, the use of energy is very high for produce more products, having higher costs of production that the suggested temperature. The indicated pressure is 1 atm., a value that allows a desirable economy of energy that would also be used for pressurization or depressurization of steam reformer. In exergetic analysis, it's seem that the lower irreversibililies occur when the pressure of reactions are lower. However, the temperature changes don't affect significantly the irreversibilites. Utilizing the obtained results from this analysis, it was concluded that the best thermodynamic conditions for steam reforming of ethanol is the same conditions suggested in the physical-chemical analysis. The exergetic and first law efficiencies are high on the thermodynamie conditions studied.
Resumo:
This work presents the stage integration in power electronics converters as a suitable solution for solar photovoltaic inverters. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. These are the expected features to turn attractive this kind of integrated structures. Therefore, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems. © 2011 IEEE.
Resumo:
The growing demand for electrical power and the limited capital invested to provide this power is forcing countries like Brazil to search for new alternatives for electrical power generation. The purpose of this paper is to present a technical and economic study on a 15 kW solar plant installed in an isolated community, highlighting the importance of the need for financial subsidy from the government. It evaluates the importance of parameters such as the annual interest rate, specific investment, the marginal cost of expanding the electrical power supply and the government subsidy on amortization time of capital invested. © 2012 Elsevier Ltd All rights reserved.
Resumo:
Urban centers have a huge demand for electricity and the growing problem of the solid waste management generated by their population, a relevant social and administrative problem. The correct disposal of the municipal solid waste (MSW) generated in cities is one of the most complex engineering problems that involves logistics, safety, environmental and energetic aspects for its adequate management. Due to a national policy of solid wastes recently promulgated, Brazilian cities are evaluating the technical and economic feasibility of incinerating the non-recyclable waste. São José dos Campos, a São Paulo State industrialized city, is considering the composting of organic waste for biogas production and mass incineration of non-recyclable waste. This paper presents a waste-to-energy system based on the integration of gas turbines to a MSW incinerator for producing thermal and electric energy as an alternative solution for the solid waste disposal in São José dos Campos, SP. A technical and economic feasibility study for the hybrid combined cycle plant is presented and revealed to be attractive when carbon credit and waste tax are included in the project income. © 2013 Elsevier Ltd.
Resumo:
The updraft biomass gasifiers currently available produce a gas with high tar content. For almost all downstream applications a substantial reduction of the tar concentration is required. The gravimetric tar concentration behavior in producer gas, obtained at a modified updraft fixed bed gasifier, was studied. The feedstock feeding system was modified respect to the traditional updraft gasification design in order to decrease the tar concentration in the producer gas; the material is feeding continuously through a conduit in the base of the reactor over the grate. The caloric power of the syngas obtained was slightly lower than the typical value for this type of reactor and the highest efficiency obtained for the woodchip gasification was 77%. The highest tar concentration obtained during the experiments was 1652.7 mg N m-3 during the first our of experiments, comparable with the smaller value reported for the updraft reactors, this value is reduced significantly after the stabilization of the gasification process in the reactor. The smaller value obtained was 21 mg N m-3. © 2013 Elsevier Ltd.
Resumo:
This paper presents a three-phase integrated inverter suitable for stand-alone and/or grid-connected applications. The usage of the special features of the tri-state coupled with the special space vector modulation allows the inverter to present an attractive degree of freedom for the controllers' design, i.e. input and output can be controlled independently. Additionally all controllers are based on dq0 transformation, the system are described and interesting simulation results are available to confirm the proposal. Finally, this paper presents experimental evaluations of the inverter feeding a three-phase stand-alone load confirming the remarkable features of the decoupling control. © 2013 IEEE.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Pós-graduação em Engenharia de Produção - FEB
Resumo:
Pós-graduação em Zootecnia - FCAV