73 resultados para properties of ceramic tiles
Resumo:
Rubber nanocomposites containing different concentrations of ferroelectric and paramagnetic nanoparticles were fabricated. Nanostructures of ferroelectric potassium strontium niobate and paramagnetic nickel-zinc ferrite were synthesized using a modified polyol method. The nanoparticle characterization was carried out by transmission electron microscopy and X-ray diffraction, showing that the materials were produced with nanometer dimensions, specific crystallinity and microstrain. Mechanical tests such as hardness type Shore A, stress-strain and compression resistance were performed. They showed that increasing the concentration of nanoparticles enhance the rigidity of vulcanized films of natural rubber and this change is more pronounce for the nanocomposites formed with ferrite nanoparticles, likely due to the effect of its morphological and surface properties. © 2013 by American Scientific Publishers.
Resumo:
Mo-doped TiO2 powders were prepared using a dry mixture of TiO2 and MoO3 oxides with several compositions, followed by a calcination step at several temperatures. The resulting oxide system develops yellow and green tones. The XRD patterns showed only traces of MoO 3; however, EDS results, combined with TG/DTA data, confirmed the presence of molybdenum ions, suggesting that the changes in optical properties of the oxide system is due to the incorporation of Mo ions into the TiO 2 matrix, substituting Ti+4 with Mo+6 ions. The band gap decreased with increasing of MoO3 content; on the other hand, the band gap reached a maximum value at about 850°C to 910°C when plotted as a function of the calcination temperature. The glazes produced showed that the oxide system under study is a potential material for use as abinary ceramic pigment. Copyright © 2013 Taylor & Francis Group, LLC.
Resumo:
Purpose: This study aimed to investigate the influence of ceramic thickness and shade on the Knoop hardness and dynamic elastic modulus of a dual-cured resin cement.Materials and Methods: Six ceramic shades (Bleaching, A1, A2, A3, A3.5, B3) and two ceramic thicknesses (1 mm, 3 mm) were evaluated. Disk specimens (diameter: 7 mm; thickness: 2 mm) of the resin cement were light cured under a ceramic block. Light-cured specimens without the ceramic block at distances of 1 and 3mm were also produced. The Knoop hardness number (KHN), density, and dynamic Young's moduli were determined. Statistical analysis was conducted using ANOVA and a Tukey B rank order test (p = 0.05).Results: The bleaching 1-mm-thick group exhibited significantly higher dynamic Young's modulus. Lower dynamic Young's moduli were observed for the 3-mm-thick ceramic groups compared to bleaching 3-mm-thick group, and no difference was found among the other 3-mm groups. For the KHN, when A3.5 3-mm-thick was used, the KHN was significantly lower than bleaching and A1 1-mm-thick ceramic; however, no difference was exhibited between the thicknesses of the same shade.Conclusions: The dual-cured resin cement studied irradiated through the 1-mm-thick ceramic with the lightest shade (bleaching ceramic) exhibited a better elastic modulus, and there was no effect in KHN of the resin cement when light cured under different ceramic shades and thicknesses (1 and 3 mm), except when the A3.5 3-mm-thick ceramic was used.Clinical Significance: Variolink II irradiated through ceramic with the lowest chroma exhibited the highest elastic modulus; therefore, the light activation method might not be the same for all clinical situations.
Resumo:
Lead zirconate titanate, with Zr/Ti ratio of 53/47 was prepared by the polymeric precursor method. It was investigated the barium (II) modification at 0.0, 0.2, 0.4 and 0.6 mol% in substitution to the lead (II) cation in A site of perovskite structure. The powder samples were characterized by XRD and the diffraction patterns were used to Rietveld refinement. The percentages of tetragonal and rhombohedral phases and a systematic study of the effect of barium (II) on the morphology and the dielectric properties of PZT were carried out. The results showed that the tetragonal phase is favored and the ceramic density is improved with the barium (II) insertion. The Curie temperature (Tc) is increased besides the slight reduction of dielectric constant (Kc).
Resumo:
The presence of pores in ceramics is directly related to the chosen forming process. So, in the starch consolidation method, the ceramics show, after burning, pores with morphology similar to that presented by this organic material. on the other hand, the increase in solid load leads up to alterations in dispersion viscosity, increasing the thermal stresses during drying and sintering processes. In order to verify the solid percentage influence in ceramic final properties, samples were prepared with silicon carbide in different compositions using or not starch as binder agent and pore forming element. The characterization of the ceramic pieces was performed by superficial roughness measurements, porosity besides by optical and scanning electron microscopy. The results showed ceramics with SiC and starch presented physical and microscopic properties slightly higher in relation to those with only ceramic powder in their composition. The presence of organic material, agglomerated and foam during the forming were essential for the final properties of the studied samples.
Resumo:
In this contribution superconducting specimens of YBa(2)Cu(3)O(7-delta) were synthesized by a modified polymeric precursor method, yielding a ceramic powder with particles of mesoscopic-size. Samples of this powder were then pressed into pellets and sintered under different conditions. The critical current density was analyzed by isothermal AC-susceptibility measurements as a function of the excitation field, as well as with isothermal DC-magnetization runs at different values of the applied field. Relevant features of the magnetic response could be associated to the microstructure of the specimens and, in particular, to the superconducting intra- and intergranular critical current properties.
Resumo:
Composite made of Lead Zirconate Titranate (PZT) ceramic powder and castor oil based polyurethane (PU) were prepared in the thin film form with 0-3 connectivity by spin coating. The composite films were obtained in the thickness range of 100 mum to 300 mum using 33-vol.% of ceramic. The samples mechanical resistance. The material was characterised by dielectric spectroscopy, thermally stimulated discharge current (TSDC), hysteresis measurements and laser-intensity-modulation method (LIMM). The pyroelectric coefficient at 343 K was 7x10(-5) C.m(-2) K-1 for the sample poled with 10 MV/m at 373 K for Ih. The results show that this new composite can be used as suitable piezo and pyroelectric sensors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Studies has been reported a significant incidence of chipping of the feldspathic porcelain veneer in zirconia-based restorations. The purpose of this study was to compare the three-point flexural strength (MPa), Weibull parameters, Vickers hardness (VHN) and Vickers indentation fracture toughness (MPa/mm(1/2)) in feldspatic porcelains for metal and for zirconia frameworks. Bar specimens were made with the porcelains e.MaxCeram (EM) and VitaVM9 (V9) for zirconia core, and Duceragold (DG) and VitaVMK95 (VK) for metal core (n = 15). Kruskal-Wallis and Dun test were used for statistical analysis. There was no significant difference (p=0.31) among the porcelains in the flexural strength (Median = 73.2; 74.6; 74.5; 74.4). Weibull calculation presented highest reliability for VK (10.8) followed by em (7.1), V9 (5.7) and DG (5.6). Vickers hardness test showed that em (536.3), V9 (579.9) and VK (522.1) had no difference and DG (489.6) had the lowest value (p<.001). The highest fracture toughness was to VK (1.77), DG (1.58) had an intermediate value while V9 (1.33) and em (1.18) had the lowest values (p<.001). Despite of the suitable flexural strength, reliability and high hardness, the porcelains used to zirconia-based fixed dental prostheses showed lower fracture toughness values.
Resumo:
Objectives. The purpose of this paper is to modify the conventional calcium fluoro-aluminosilicate glass, which is used in the formation of glass ionomer cements (CIGs) by the niobium addition and to study the properties of GICs obtained.Materials and methods. Sol-gel process was used to prepare the powder at lower temperature than fusion method. Glass-ceramic powder obtained in this way was used to prepare the GICs. The properties such as working and setting times, microhardness and diametral tensile strength were evaluated for the experimental GICs and a commercial luting cement.Results. The ideal powder:liquid (P:L) ratio determined to prepare the experimental GICs was equal to 1:1. The cements prepared using this ratio showed working and setting times similar to the commercial GICs. in mechanical tests it was observed that microhardness and diametral tensile strength of the experimental GICs decreased significantly with the reduction of P:L ratio. on the other hand, the results obtained in microhardness tests indicated that the presence of niobium was a positive factor.Significance. The chemical process allows the development of glass-ceramic powder at 600 degrees C which is the goal of the present paper. It was concluded that GICs containing niobium might be used in dental applications and these results encourage further researches on other compositions. (c) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Thin films of lithium niobate were deposited on the Pt/Ti/SiO2 (111) substrates by spin coating from the polymeric precursor method (Pechini process). Annealing in static air and oxygen atmosphere was performed at 500 degreesC for 3 h. The films obtained were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The dielectric constant and dissipation factor were measured in frequency region from 10 Hz to 10 MHz. Electrical characterization of the films pointed to ferroelectricity via hysteresis loop. The influence of oxygen atmosphere on crystallization, morphology and properties of LiNbO3 thin films is discussed. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Piezoresponse Force Microscopy (PFM) is used to characterize the nanoscale electromechanical properties of centrosymmetric CaCu3Ti4O12 ceramics with giant dielectric constant. Clear PFM contrast both in vertical (out-of-plane) and lateral (in-plane) modes is observed on the ceramic surface with varying magnitude and polarization direction depending on the grain crystalline orientation. Lateral signal changes its sign upon 180 degrees rotation of the sample thus ruling out spurious electrostatic contribution and confirming piezoelectric nature of the effect. Piezoresponse could be locally reversed by suitable electrical bias (local poling) and induced polarization was quite stable showing long-time relaxation (similar to 3 hrs). The electromechanical contrast in unpoled ceramics is attributed to the surface flexoelectric effect (strain gradient induced polarization) while piezoresponse hysteresis and ferroelectric-like behavior are discussed in terms of structural instabilities due to Ti off-center displacements and structural defects in this material. (C) 2011 American Institute of Physics. [doi:10.1063/1.3623767]
Resumo:
Magnetic properties of two spinel oxides solid solutions, Cul+xMn2-xO4 and Ni1+xMn2-xO4 are reported. These series are characterized by two magnetic transitions: the upper one, of ferrimagnetic type, occurs at about 85 K (for copper-based) and at 105-110 K (for nickel-based spinels), independently of the x-content: the lower transition may be related to a Neel-type collinear ordering and takes place at 30 and 45 K, respectively. Application of moderate fields (H > 250 Oe) make both transitions to merge into one broad maximum in the magnetization, which takes place at lower temperature when applying larger fields. Magnetization cycles with temperature (ZFC/FC) or field (loops) allowed us to well characterize the ordered state. The effective moment follows the expected behavior when manganese ions are being substituted by ions of lower magnetic moment (Ni(2+)andCU(2+)). (c) 2007 Elsevier Ltd. All rights reserved.