29 resultados para positron
Resumo:
The neutrino oscillation experiment KamLAND has provided us with the first evidence for e disappearance, coming from nuclear reactors. We have combined their data with all solar neutrino data, assuming two flavor neutrino mixing, and obtained allowed parameter regions which are compatible with the so-called large mixing angle MSW solution to the solar neutrino problem. The allowed regions in the plane of mixing angle and mass squared difference are now split into two islands at 99% C.L. We have speculated how these two islands can be distinguished in the near future. We have shown that a 50% reduction of the error on SNO neutral-current measurement can be important in establishing in each of these islands the true values of these parameters lie, We also have simulated KamLAND positron energy spectrum after I year of data taking, assuming the current best fitted values of the oscillation parameters, combined it the with current solar neutrino data and showed how these two split islands can be modified. (C) 2003 Published by Elsevier B.V. B.V.
Resumo:
For m(2) < a(2) + q(2), with m, a, and q respectively the source mass, angular momentum per unit mass, and electric charge, the Kerr-Newman (KN) solution of Einstein's equation reduces to a naked singularity of circular shape, enclosing a disk across which the metric components fail to be smooth. By considering the Hawking and Ellis extended interpretation of the KN spacetime, it is shown that, similarly to the electron-positron system, this solution presents four inequivalent classical states. Making use of Wheeler's idea of charge without charge, the topological structure of the extended KN spatial section is found to be highly non-trivial, leading thus to the existence of gravitational states with half-integral angular momentum. This property is corroborated by the fact that, under a rotation of the space coordinates, those inequivalent states transform into themselves only after a 4π rotation. As a consequence, it becomes possible to naturally represent them in a Lorentz spinor basis. The state vector representing the whole KN solution is then constructed, and its evolution is shown to be governed by the Dirac equation. The KN solution can thus be consistently interpreted as a model for the electron-positron system, in which the concepts of mass, charge and spin become connected with the spacetime geometry. Some phenomenological consequences of the model are explored.
Resumo:
We present a measurement of the shape of the boson rapidity distribution for p (p) over bar -> Z/gamma(*)-> e(+)e(-)+X events at a center-of-mass energy of 1.96 TeV. The measurement is made for events with electron-positron mass 71 < M-ee < 111 GeV and uses 0.4 fb(-1) of data collected at the Fermilab Tevatron collider with the D0 detector. This measurement significantly reduces the uncertainties on the rapidity distribution in the forward region compared with previous measurements. Predictions of next-to-next-to-leading order (NNLO) QCD are found to agree well with the data over the full rapidity range.
Resumo:
We report the results of a search for a narrow resonance decaying into two photons in 1.1 fb(-1) of data collected by the D0 experiment at the Fermilab Tevatron Collider during the period 2002-2006. We find no evidence for such a resonance and set a lower limit on the mass of a fermiophobic Higgs boson of m(hf) > 100 GeV at the 95% C.L. This exclusion limit exceeds those obtained in previous searches at the Fermilab Tevatron and covers a significant region of the parameter space B(h(f) -> gamma gamma) vs m(hf) which was not accessible at the CERN Large Electron-Positron Collider.
Resumo:
We present a measurement of the forward-backward charge asymmetry (A(FB)) in pp -> Z/gamma(*)+X -> e(+)e(-)+X events at a center-of-mass energy of 1.96 TeV using 1.1 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron collider. A(FB) is measured as a function of the invariant mass of the electron-positron pair, and found to be consistent with the standard model prediction. We use the A(FB) measurement to extract the effective weak mixing angle sin(2)theta(eff)(W)=0.2326 +/- 0.0018(stat)+/- 0.0006(syst).
Resumo:
Neste artigo, fazemos uma breve exposição de como um dos conceitos fundamentais da física moderna, a existência de antimatéria, tem aplicação na medicina, na chamada tomografia por emissão de pósitrons (PET na sigla em inglês). Ela consiste na produção de imagens tomográficas digitais do organismo que são obtidas pela detecção da radiação produzida na aniquilação do pósitron com o elétron.
Resumo:
Dynamical properties of the U-238-U-238 system at the classical turning point, specifically the distance of closest approach, the relative orientations of the nuclei, and deformations have been studied at the sub-Coulomb energy of E(lab) = 6.07 MeV/nucleon using a classical dynamical model with a variable moment of inertia. Probability of favorable alignment for anomalous positron-electron pair emission through vacuum decay is calculated. The calculated small favorable alignment probability value of 0.116 is found to be enhanced by about 16% in comparison with the results of a similar study using a fixed moment of inertia as well as the results from a semiquantal calculation reported earlier.
Resumo:
The great simplicity attained by the Weyl-van der Waerden spinor technique in the evaluation of helicity invariant amplitudes is shown to apply in the cumbersome calculations within the framework of linearized gravitation. Once the graviton couplings to spin-0, 1/2, 1, and 3/2 particles are given, we exhibit the reach of this method by evaluating, as an example, the helicity amplitudes for the process electron + positron → photon + graviton in a very straightforward way. © 1994 Plenum Publishing Corporation.
Resumo:
We report the results of a search for a narrow resonance decaying into two photons in 1.1fb-1 of data collected by the D0 experiment at the Fermilab Tevatron Collider during the period 20022006. We find no evidence for such a resonance and set a lower limit on the mass of a fermiophobic Higgs boson of mhf>100GeV at the 95% C.L. This exclusion limit exceeds those obtained in previous searches at the Fermilab Tevatron and covers a significant region of the parameter space B(hf→I I ) vs mhf which was not accessible at the CERN Large Electron-Positron Collider. © 2008 The American Physical Society.
Resumo:
Using data corresponding to an integrated luminosity of 1.3fb -1, we observe a narrow mass state decaying into Υ(1S)+γ, where the Υ(1S) meson is detected by its decay into a pair of oppositely charged muons, and the photon is identified through its conversion into an electron-positron pair. The significance of this observation is 5.6 standard deviations. The mass of the state is centered at 10.551±0.014(stat) ±0.017(syst)GeV/c2, which is consistent with that of the state recently observed by the ATLAS Collaboration. © 2012 American Physical Society.
Resumo:
Pós-graduação em Física - IFT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We analyze the capability of the next generation of linear electron-positron colliders to unravel the spin and couplings of excited leptons predicted by composite models. Assuming that these machines will be able to operate both in the e+e- and e-γ modes, we study the effects of the excited electrons of spin 1/2 and 3/2 in the reactions e-γ → e-γ and e+e- → γγ. We show how the use of polarized beams is able not only to increase the reach of these machines, but also to determine the spin and couplings of the excited states.