118 resultados para phylogenetic constraints


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All larval stages and the first crab instar of Paradasygyius depressus (Bell) were obtained in laboratory culture. Larval development consists of two zoeal stages, followed by the megalopa. Each larval stage is described in detail. Beginning with the first zoea, the duration of each stage was 4--7 (4.5 +/- 0.7), 4-5 (4.5 +/- 0.5), and 7 days, the megalopa and first crab instar appearing 11 +/- 1 and 15 days after hatching, respectively. A phylogenetic analysis of 21 genera of Majidae is provided based on 34 zoeal and three megalopal characters. The phylogenetic analysis resulted in four equally parsimonious trees 173 steps long (CI = 0.66, RI = 0.71, and RC = 0.47) supporting the monophyly of Oregoniinae, Majinae, and Inachinae (with the exclusion of Macrocheira de Haan incertae sedis). Based on general agreement of sister-group hypotheses, we provide sets of larval characters that define Oregoniinae, Majinae, and Inachinae. Our phylogenetic hypothesis suggests that Oregoniinae is the most basal clade within the Majidae, and Majinae and the clade (Epialtus H. Milne Edwards + Inachinae [excluding Macrocheira incertae sedis]) are sister taxa. Within Inachinae, all trees suggest that Inachus Weber and Macropodia Leach are sister taxa nested as the most derived clade, followed by Achaeus Leach, Pyromaia Stimpson, Paradasygyius Garth, Anasimus A. Milne-Edwards, and the most basal Stenorhynchus Lamarck. The sister-group relationships of the clade (Pisa Leach (Taliepus A. Milne-Edwards + Libinia Leach)), Mithrax Latreille and Microphrys H. Milne Edwards remained unresolved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Larval development of Macrocoeloma diplacanthum (Stimpson) consists of two zoeal stages, followed by the megalopa. Each larval stage is described in detail. The duration of the zoeal stages was 2-3 (2.4 +/- 0.5) and 3-4 (3.5 +/- 0.5) days for the first and second zoea, respectively, the megalopa phase appearing 6-8 (7.0 +/- 0.5) days after hatching. Unlike for other majids, zoeal stages of M. diplacanthum can be readily distinguished by their distended forehead with strong underlying muscle bands, undercut dorsal carapace spine, and spine on the terminal endopod segment of the first maxilliped. No other known mithracine or majid zoeae exhibit this combination of features. Our zoeal account of M. diplacanthum from Mexico is remarkably consistent with Floridian specimens previously described. However, we have found some differences between descriptions, which could be attributed to natural variation or inadequate description. Previous attempts to evaluate the relationships within Mithacinae have been based on larval characters widely distributed throughout Majidae and therefore are considered inadequate to infer sister-group relationships. The phylogenetic analysis of majids suggested that the position of Mithracinae is still uncertain, as is its monophyletic status. We recommend that additional characters, particularly of the megalopa phase, be sought for a better resolution of majid evolutionary history.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We re-evaluated the larval support for families within majoids using the Wilcoxon signed-rank test with emphasis on Inachoididae. To accomplish our objectives, we added 10 new taxa, two of which are traditionally assigned to the family of special interest, to a previous larval database for majoids, and re-appraised the larval characters used in earlier studies. Phylogenetic analysis was performed with PAUP* using the heuristic search with 50 replicates or the branch-and-bound algorithm when possible. Multi-state transformation series were considered unordered; initially characters were equally weighted followed by successive weighting, and trees were rooted at the Oregoniidae node. Ten different topological constraints were enforced for families to evaluate tree length under the assumption of monophyly for each taxonomic entity. Our results showed that the tree length of most constrained topologies was not considerably greater than that of unconstrained analysis in which most families nested as paraphyletic taxa. This may indicate that the present larval database does not provide strong support for paraphyly of the taxa in question. For Inachoididae, although the Wilcoxon signed-rank test rejected a significant difference between unconstrained and constrained cladograms, we were unable to provide a single synapomorphy for this clade. Except for the conflicting position of Leurocyclus and Stenorhynchus, the two clades correspond to the traditional taxonomic arrangement. Among inachoidids, the clade (Anasimus (Paradasygyius (Collodes + Pyromaia))) is supported, whereas for inachids, the clade (Inachus (Macropodia + Achaeus)) is one of the most supported clades within majids. As often stated, only additional characters will provide a better test for the monophyly of Inachoididae and other families within Majoidea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The previous uncertain placement of Lysapsus and Pseudis within the neobatrachians was recently resolved by molecular and morphological studies, which supported them as members of the Hylinae subfamily. Their inter- and intrageneric relationships, however, have long been under debate and no studies shed light on these questions. Aiming to elucidate such questions, this paper used 3.2 kb comprising the mitochondrial genes 12S, tRNA valine, 16S and cytochrome b, and the nuclear exon 1 coding for rhodopsin, to all representatives of both genera (except to two subspecies of Pseudis paradoxa). The results identified three major clades: the clade 1 was composed by Lysapsus species and subspecies; clade 2 included the subspecies of the Pseudis paradoxa (Pseudis paradoxa paradoxa, P. paradoxa platensis and P. paradoxa occidentalis), P. fusca, P. bolbodactyla and P. tocantins, and clade 3 was composed by Pseudis southern Brazil species (Pseudis cardosoi and P. minuta). As closely related taxa we found Pseudis minuta + P. cardosoi; P. tocantins + P. fusca, and the subspecies within each genus. Evidence that Pseudis is not monophyletic with respect to Lysapsus was found and we suggest Lysapsus to be a junior synonym of Pseudis. Based on pair-wise comparison among gene sequences, we also suggest that the subspecies of Pseudis paradoxa and Lysapsus limellum must be considered as full species. (c) the Willi Hennig Society 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poison frogs of the family Dendrobatidae contain cryptic as well as brightly colored, presumably aposematic species. The prevailing phylogenetic hypothesis assumes that the aposematic taxa form a monophyletic group while the cryptic species (Colostethus sensu lato) are basal and paraphyletic. Analysis of 86 dendrobatid sequences of a fragment of the 16S rRNA gene resulted in a much more complex scenario, with several clades that contained aposematic as well as cryptic taxa. Monophyly of the aposematic taxa was significantly rejected by SH-tests in an analysis with additional 12S and 16S rDNA fragments and reduced taxon sampling. The brightly colored Allobates femoralis and A. zaparo (Silverstone) comb. nov. (previously Epipedobates) belong in a clade with cryptic species of Colostethus. Additionally, Colostethus pratti was grouped with Epipedobates, and Colostethus bocagei with Cryptophyllobates. In several cases, the aposematic species have general distributions similar to those of their non-aposematic sister groups, indicating multiple instances of regional radiations in which some taxa independently acquired bright color. From a classificatory point of view, it is relevant that the type species of Minyobates, M. steyermarki, resulted as the sister group of the genus Dendrobates, and that species of Mannophryne and Nephelobates formed monophyletic clades, corroborating the validity of these genera. Leptodactylids of the genera Hylodes and Crossodactylus were not unambiguously identified as the sister group of the Dendrobatidae; these were monophyletic in all analyses and probably originated early in the radiation of Neotropical hyloid frogs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)