25 resultados para parent-infant bonding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of cyclical mechanical loading on the bond strength of a fiber and a zirconia post bonded to root dentin.Materials and Methods: Forty single-rooted human teeth (maxillary incisors and canines) were sectioned, and the root canals were prepared at 12 mm. Twenty randomly seleced specimens received a quartz fiber post (FRC) (D.T. Light-Post) and 20 others received a zirconia post (ZR) (Cosmopost). The posts were resin luted (All Bond 2 + resin cement Duo-link) and each specimen was embedded in epoxy resin inside a PVC cylinder. Ten specimens with FRC post and 10 specimens with ZR post were submitted to fatigue testing (2,000,000 cycles; load: 50 N; angle of 45 degrees; frequency: 8 Hz), while the other 20 specimens were not fatigued. Thus, 4 groups were formed: G1: FRC+O cycles; G2: FRC+2,000,000 cycles; G3: ZR+O cycles; G4: ZR+2,000,000 cycles. Later, the specimens were cut perpendicular to their long axis to form 2-mm-thick disk-shaped samples (4 sections/specimen), which were submitted to the push-out test (1 mm/min). The mean bond strength values (MPa) were calculated for each tooth (n = 10) and data were submitted to statistical analysis (alpha = 0.05).Results: Two-way ANOVA revealed that the bond strength was significantly affected by mechanical cycling (p = 0.0014) and root post (p = 0.0325). The interaction was also statistically significant (p = 0.0010). Tukey's test showed that the mechanical cycling did not affect the bonding of FRC to root dentin, while fatigue impaired the bonding of zirconium to root dentin.Conclusion: (1) the bond strength of the FRC post to root dentin was not reduced after fatigue testing, whereas the bonding of the zirconia post was significantly affected by the fatigue. (2) Cyclical mechanical loading appears to damage the bond strength of the rigid post only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the influence of dentin abrasion on the microshear bond strength of two self-etching adhesive systems, using either an ultrasound diamond bur or a high-speed diamond bur.Materials and Methods: Twenty noncarious human third molars were sectioned mesiodistally into halves. The enamel was ground to expose a flat dentin surface on both sections. The dentinal surfaces were randomly assigned to two groups, depending on the method of smear layer preparation: ultrasound diamond bur (UB) or conventional diamond bur (CB). The prepared dentin surfaces received one of two self-etching systems: Clearfil SE Bond (CF) and One-Up Bond F (OB). A composite cylinder with a 0.95-mm diameter was bonded to each specimen and the microshear bond test was performed. The results were expressed in MPa and were subjected to two-way analysis of variance (ANOVA) and Tukey's test (alpha = 0.05).Results: There was no significant difference in dentin bond strength when comparing the conventional and ultrasonic abrasion methods. When the adhesive systems were compared, Clearfil SE Bond achieved higher bond strength means than did One-Up Bond F.Conclusion: The dentin surface preparation method did not influence the microshear bond strength and the Clearfil SE Bond adhesive system, independent of bur type used, Clearfil SE Bond showed higher bond strengths than did the One-Up Bond F adhesive system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study evaluated the efficacy of the union between two new self-etching self-adhesive resin cements and enamel using the microtensile bond strength test.Materials and Methods: Buccal enamel of 80 bovine teeth was submitted to finishing and polishing with metallographic paper to a refinement of #600, in order to obtain a 5-mm(2) flat area. Blocks (2 x 4 x 4 mm) of laboratory composite resin were cemented to enamel according to different protocols: (1) untreated enamel + RelyX Unicem cement (RX group); (2) untreated enamel + Bifix SE cement (BF group); (3) enamel acid etching and application of resin adhesive Single Bond + RelyX Unicem (RXA group); (4) enamel acid etching and application of resin adhesive Solobond M + Bifix SE (BFA group). After 7 days of storage in distillated water at 37 degrees C, the blocks were sectioned for obtaining microbar specimens with an adhesive area of 1 mm(2) (n = 120). Specimens were submitted to the microtensile bond strength test at a crosshead speed of 0.5 mm/min. The results (in MPa) were analyzed statistically by ANOVA and Tu key's test.Results: Enamel pre-treatment with phosphoric acid and resin adhesive (27.9 and 30.3 for RXA and BFA groups) significantly improved (p <= 0.05) the adhesion of both cements to enamel compared to the union achieved with as-polished enamel (9.9 and 6.0 for RX and BF).Conclusion: Enamel pre-treatment with acid etching and the application of resin adhesive significantly improved the bond efficacy of both luting agents compared to the union achieved with as-polished enamel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To determine the influence of cement thickness and ceramic/cement bonding on stresses and failure of CAD/CAM crowns, using both multi-physics finite element analysis and monotonic testing.Methods. Axially symmetric FEA models were created for stress analysis of a stylized monolithic crown having resin cement thicknesses from 50 to 500 mu m under occlusal loading. Ceramic-cement interface was modeled as bonded or not-bonded (cement-dentin as bonded). Cement polymerization shrinkage was simulated as a thermal contraction. Loads necessary to reach stresses for radial cracking from the intaglio surface were calculated by FEA. Experimentally, feldspathic CAD/CAM crowns based on the FEA model were machined having different occlusal cementation spaces, etched and cemented to dentin analogs. Non-bonding of etched ceramic was achieved using a thin layer of poly(dimethylsiloxane). Crowns were loaded to failure at 5 N/s, with radial cracks detected acoustically.Results. Failure loads depended on the bonding condition and the cement thickness for both FEA and physical testing. Average fracture loads for bonded crowns were: 673.5 N at 50 mu m cement and 300.6 N at 500 mu m. FEA stresses due to polymerization shrinkage increased with the cement thickness overwhelming the protective effect of bonding, as was also seen experimentally. At 50 mu m cement thickness, bonded crowns withstood at least twice the load before failure than non-bonded crowns.Significance. Occlusal "fit" can have structural implications for CAD/CAM crowns; pre-cementation spaces around 50-100 mu m being recommended from this study. Bonding benefits were lost at thickness approaching 450-500 mu m due to polymerization shrinkage stresses. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: The lack of durability in resin-dentine bonds led to the use of chlorhexidine as MMP-inhibitor to prevent the degradation of hybrid layers. Biomimetic remineralisation is a concept-proven approach in preventing the degradation of resin-dentine bonds. The purpose of this study is to examine the integrity of aged resin-dentine interfaces created with a nanofiller-containing etch-and-rinse adhesive after the application of these two approaches.Methods: The more established MMP-inhibition approach was examined using a parallel in vivo and in vitro ageing design to facilitate comparison with the biomimetic remineralisation approach using an in vitro ageing design. Specimens bonded without chlorhexidine exhibited extensive degradation of the hybrid layer after 12 months of in vivo ageing.Results: Dissolution of nanofillers could be seen within a water-rich zone within the adhesive layer. Although specimens bonded with chlorhexidine exhibited intact hybrid layers, water-rich regions remained in those hybrid layers and degradation of nanofillers occurred within the adhesive layer. Specimens subjected to in vitro biomimetic remineralisation followed by in vitro ageing demonstrated intrafibrillar collagen remineralisation within hybrid layers and deposition of mineral nanocrystals in nanovoids within the adhesive.Conclusions: The impact was realized by understanding the lack of an inherent mechanism to remove water from resin-dentine interfaces as the critical barrier to progress in bonding with the etch-and-rinse technique. The experimental biomimetic remineralisation strategy offers a creative solution for incorporating a progressive hydration mechanism to achieve this goal, which warrants its translation into a clinically applicable technique. (C) 2011 Elsevier Ltd. All rights reserved.