43 resultados para organic soils


Relevância:

30.00% 30.00%

Publicador:

Resumo:

O impacto dos resíduos orgânicos agroindustriais no ambiente pode ser reduzido com o seu uso agrícola. do ponto de vista da fertilidade do solo, o que se deseja com a aplicação dos resíduos é aumentar o teor de matéria orgânica e fornecer nutrientes para as plantas. Neste trabalho, objetivou-se avaliar o efeito do lodo biológico de indústria de gelatina em atributos químicos de dois Argissolos Vermelho-Amarelos (PVA-arenoso e PVA-textura média) e de um Latossolo Vermelho (LV-argiloso). O experimento foi conduzido por 120 dias em laboratório, em delineamento inteiramente casualizado e esquema fatorial combinando os três solos e seis doses de lodo (0, 100, 200, 300, 400 e 500 m³ ha-1), com três repetições. A aplicação de até 500 m³ ha-1 de lodo diminui a acidez do solo e aumenta a CTC efetiva e a disponibilidade de N, Ca, Mg e P, sem ultrapassar o limite de tolerância para Na. O aumento do teor de bases, maior do que o da CTC efetiva, indica que a maior parte dos cátions adicionados pelo lodo permanece em solução e pode ser perdida por lixiviação.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 1980-1990 Amazonian gold rush left an enormous liability that increasingly has been substituted by developing fish aquaculture. This work aimed at the identification of the mercury levels in the environment, associated with fish farms located in the North of Mato Grosso State, Southern Amazon. Sediment and soil samples were analyzed for total organic carbon and total mercury. Results indicate that the chemical characteristics of the sediment largely depend on the management procedures of the fish pond (liming, fish food used and fish population). The soils presented relatively low concentrations when compared with other data from the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser-induced fluorescence (LIF) spectroscopy has been proposed as new method for determining the degree of humification of organic matter (OM) in whole soils. It can be also used to analyze the OM in whole soils containing large amounts of paramagnetic materials, and which are neither feasible to Electron Paramagnetic Resonance (EPR) nor to C-13 Nuclear Magnetic Resonance (NMR) spectroscopy. In the present study, 3 LIF spectroscopy was used to investigate the OM in a Brazilian Oxisol containing high concentration of Fe+3. Soil samples were collected from two areas under conventional tillage (CT), two areas under no-till management (NT) and from a non-cultivated (NC) area under natural vegetation. The results of LIF spectroscopic analysis of the top layer (0-5 cm) of whole soils showed a less aromatic OM in the non-cultivated than in the cultivated soils. This is consistent with data corresponding to HA samples extracted from the same soils and analyzed by EPR, NMR and conventional fluorescence spectroscopy. The OM of whole soils at 5-10 and 10-20 cm depth was also characterized by LIF spectroscopy.Analysis of samples of NT and NC soils showed a higher OM aromatic content at depth. This is a consequence of the accumulation of plant residues at the soil surface in quantities that are too large for microorganisms to metabolize fully, thus, resulting in less aromatic or less hurnified humic substances. In deeper soil layers, the input of residues was lower and further decomposition of humic substances by microorganisms continued, and the aromaticity and degree of humification increased with soil depth. This data indicates that the gradient of humification of OM in the NT soil was similar to those observed in natural soils. Nevertheless, the degree of humification of the OM in the soils under no-till management varied less than that corresponding to non-cultivated soils. This may be because the former have been managed under these practices for only 5 years, in contrast to the continuous humification process occurring in the natural soils. on the other band, LIF spectroscopic analysis of the CT soils showed less pronounced changes or no change in the degree of humification with depth. This indicates that the ploughing and harrowing involved in CT lead to homogenization of the soil and thereby also of the degree of humification of OM throughout the profile. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several changes in the soil humus characteristics were observed after clearing the Central Brazil virgin forest. When compared with the original ''Cerrado'' forest, the soils from the agricultural systems showed increased values for cation exchange capacity, total organic matter and non-extractable humin. The humic acid fraction underwent some changes suggesting increased oxidation and decreased aliphatic content. The soil organic N tends to accumulate in the insoluble humus fractions.The above changes were much less intense when the virgin forest was transformed into pastures. Under these conditions, the most significant changes were the reduction of readily biodegradable soil organic matter fractions.In view of the intensity of the lixiviation processes in the area studied, the above changes may be connected with the reduction in aggregate stability observed in the cleared sites.In general, the characteristics of the humus formations in the ''Cerrado'' region suggested high resistance to external factors, which is in part attributed to the active insolubilization of humic colloids by the Al and Fe oxides. In the absence of erosive processes in the cleared sites, additional humus stability may conform both to selective biodegradation and/or lixiviation of the humic colloids, or to the effects of the fire used in soil management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polar Regions are the most important soil carbon reservoirs on Earth. Monitoring soil carbon storage in a changing global climate context may indicate possible effects of climate change on terrestrial environments. In this regard, we need to understand the dynamics of soil organic matter in relation to its chemical characteristics. We evaluated the influence of chemical characteristics of humic substances on the process of soil organic matter mineralization in selected Maritime Antarctic soils. A laboratory assay was carried out with soils from five locations from King George Island. We determined the contents of total organic carbon, oxidizable carbon fractions of soil organic matter, and humic substances. Two in situ field experiments were carried out during two summers, in order to evaluate the CO2-C emissions in relation to soil temperature variations. The overall low amounts of soil organic matter in Maritime Antarctic soils have a low humification degree and reduced microbial activity. CO2-C emissions showed significant exponential relationship with temperature, suggesting a sharp increase in CO2-C emissions with a warming scenario, and Q10 values (the percentage increase in emission for a 10°C increase in soil temperature) were higher than values reported from elsewhere. The sensitivity of the CO2-C emission in relation to temperature was significantly correlated with the humification degree of soil organic matter and microbial activity for Antarctic soils. © 2012 Antarctic Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report on a field experiment being carried out in a Typic Eutrorthox. The experiment was initiated in the 1997-98 agricultural season as a randomized block design with four treatments (0, 5, 10, and 20 t ha -1) of sewage sludge and five replicates. Compound soil samples were obtained from 20 subsamples collected at depths of 0-0.1 and 0.1-0.2 m. Cu, Fe, Mn, and Zn concentrations were extracted with DTPA pH 7.3; 0.1 mol L -1 HCl, Mehlich-I, Mehlich-III, and 0.01 mol L-1 CaCl 2. Metal concentrations were determined via atomic absorption spectrometry. Diagnostic leaves and the whole above-ground portion of plants were collected to determine Cu, Fe, Mn, and Zn concentrations extracted by nitric-perchloric digestion and later determined via atomic absorption spectrometry. Sewage sludge application caused increases in the concentrations of soil Cu, Fe, and Mn in samples taken from the 0-0.1 m depth evaluated by the extractants Mehlich-I, Mehlich-III, 0.01 mol L-1 HCl and DTPA pH 7.3. None of the extractants provided efficient estimates of changes in Mn concentrations. The acid extractants extracted more Cu, Fe, Mn, and Zn than the saline and chelating solutions. The highest concentrations of Cu, Fe, and Zn were obtained with Mehlich-III, while the highest concentrations of Mn were obtained with HCl. We did not observe a correlation between the extractants and the concentrations of elements in the diagnostic leaves nor in the tissues of the whole maize plant (Zea mays L.). © 2013 Springer Science+Business Media Dordrecht.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physical fractions (free light fraction, intra-aggregate light fraction and heavy fraction) of soil organic matter (SOM) are good indicators of soil quality for sustainable land use. The objective of this study was to evaluate the effect of cover crops on total organic carbon (TOC) and physical fractions of soil organic matter in soil under a no-tillage system (NTS) and a conventional tillage system (CTS, one plowing and two disking). A three-year field experiment was carried out as a cover crop-rice (Oryza sativa)-cover crop-rice rotation. Treatments included cover crops (Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and pearl millet (Pennisetum glaucum), fallow, till or no till. The SOM was physically fractionated in free light fraction (FLF), intra-aggregates light fraction (IALF) and heavy fraction (HF). The levels of C in whole soil were also evaluated, as well as C in the light fractions (FLF+IALF) and in the HF. Results indicated that concentrations of C in the FLF and IALF in surface soils (0-0.05m) were much higher (10.8 and 1.95gkg-1, respectively) than that in the 0.05-0.1m soil depth (7.68 and 1.54gkg-1, respectively) and in the 0.1-0.2m soil depth (4.98 and 1.24gkg-1, respectively). The NTS resulted in higher levels of FLF (12.2gkg-1) and IALF (2.19gkg-1) than with CTS (1.37-7.30gkg-1). Millet had the highest C (19.5gkg-1) and N (1.1gkg-1) concentrations in soil. There was an accumulation of TOC and total N in the surface soil with cover crops, and concentrations of TOC were higher in the HF (79.0%) than in the light fractions (21.0%). Although SOM changed little during the two years of this experiment, the various C fractions were significantly affected by the tillage treatments. We conclude that SOM physical fractionation allowed seeing significant differences caused by the soil management in the organic matter dynamics in a short period of time. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study objective was to evaluate the influence of the addition of soybeans residues on the chemical properties of Eutrudox and Hapludox soils. Soybean leaves and stems were incubated for 0-200 days. The statistical model used was a 5×4 factorial (plantxincubation period) with three replications. Soils without addition of plants were used as controls. Total Organic Carbon (TOC), Soluble Carbon (SC), Total Carbohydrates (TC), Humic Acid (HA), Fulvic Acid (FA) and Humification Rate (HR) were determined. Higher values of chemical attributes (TOC, SC and TC) were found in the Eutrudox soil than in the Hapludox soil and these values increased significantly (p<0.05) after 50 days of incubation in relation to the initial period. The TOC, SC and TC increased in soils amended with soybean plants when compared to controls without plants. HA and FA contents and HR were not affected by the addition of soybean residues. Maximum HA contents were found after 100 days and maximum FA contents and HR were found after 200 days incubation in both soils. It can be concluded that the addition of soybean residues increased the soil chemical properties when compared to the controls. © 2013 Academic Journals Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temporary B deficiency can be triggered by liming of acid soils because of increased B adsorption at higher soil pH. Plants respond directly to the activity of B in soil solution and only indirectly to B adsorbed on soil constituents. Because the range between deficient and toxic B concentration is relatively narrow, this poses difficulty in maintaining appropriate B levels in soil solution. Thus, knowledge of the chemical behavior of B in the soil is particularly important. The present study investigated the effect of soil pH on B adsorption in four soils of Parana State, and to correlate these values with the physical and chemical properties of the soils. Surface samples were taken from a Rhodic Hapludox, Arenic Hapludalf, Arenic Hapludult, and one Typic Usthorthent. To evaluate the effect of pH on B adsorption, subsamples soil received the application of increasing rates of calcium carbonate. Boron adsorption was accomplished by shaking 2.0 g soil, for 24 h, with 20 mL of 0.01 mol L-1 NaCl solution containing different concentrations (0.0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6, 2.0, and 4.0 mg B L-1). Sorption was fitted to non-linear form of the Langmuir adsorption isotherm. Boron adsorption increased as concentration increased. Boron adsorption was dependent on soil pH, increasing as a function of pH in the range between 4.6 and 7.4, although the bonding energy has decreased. Maximum adsorption capacity (MAC) of B was observed in the Arenic Hapludalf (49.8 mg B kg(-1) soil) followed by Arenic Hapludult (22.5 mg kg(-1)), Rhodic Hapludox (17.4 mg kg(-1)), and Typic Usthorthent (7.0 mg kg(-1)). The organic matter content, clay content, and aluminum oxide content (Al2O3) were the soils properties that affecting the B adsorption on Parana soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The infestation of weeds is a major biotic factor in the agroecosystem of cane sugar that may interfere in development and crop productivity. This study aimed to evaluate the potential for leaching and residual effects of the herbicide amicarbazone in contrasting soils. Samples were Quartzarenic Neosol (NR - sandy texture) and Red Latosol (LR - clay texture). For the leaching potential, after application of herbicide amicarbazone (NR 1.05 kg ha(-1) and LR 1.40 kg ha(-1)), layers of 0, 20, 40, 60, 80 and 100 mm of water were applied to soil columns. We evaluated the residual effect after the permanence of the herbicide in soil of clay texture and sandy for periods of 0, 25, 50, 75 and 100 days after application (DAA) of amicarbazone (0, 1.05, 1.40 kg ha(-1)) treatments. The amicarbazone started showing high leaching from the 60 mm layer of water in sandy texture soils, evidencing a shorter residual effect. In clay soil, slides from 20 to 80 mm of water reduced the biomass until a depth of 5-10 cm, with the use of this herbicide. Based on these results, we conclude that the amicarbazone showed higher leaching and lower residual effects in sandy soil. The residual effect of amicarbazone was prolonged as the content of clay and organic matter present in the soil increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)