47 resultados para optical planar waveguides


Relevância:

100.00% 100.00%

Publicador:

Resumo:

SiO2 (1-x) - TiO2 (x) waveguides, with the mole fraction x in the range 0.07 - 0.20 and thickness of about 0.4 μm, were deposited on silica substrates by a dip-coating technique. The thermal treatments at 700-900°C, used to fully densify the xerogels, produce nucleation of TiO2 nanocrystals even for the lowest TiO2 content. The nucleation of TiO2 nanocrystals and their growth by thermal annealing up to 1300°C were studied by waveguide Raman spectroscopy, for the SiO2 (0.8) - TiO2 (0.2) composition. By increasing the annealing temperature, the Raman spectrum evolves from that typical of the silica-titania glass to that of anatase, but brookite phase is dominant at intermediate temperatures. In the low. frequency region (5-50 cm-1) of the Raman spectra, acoustic vibrations of the nanocrystals are observed. From the measured line shapes, we can deduce the size distribution of the particles. The results are compared with those obtained from the line widths in the X-ray diffraction patterns. Nanocrystals with a mean size in the range 4-20 nm are obtained, by thermal annealing in a corresponding range of 800-1300°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-inorganic hybrids were prepared using ureapropyltriethoxysilane, methacryloxypropyltrimethoxysilane and acrylic acid modified zirconium(IV) n-propoxide precursors and were characterized by small angle X-ray scattering, X-ray diffraction and photoluminescence spectroscopy. The results indicate an effective interaction between the zirconium-based nanoparticles and the siliceous nanodomains that induces changes in the hybrids' emission features. Planar waveguides were obtained by spin-coating of the prepared sols on sodalime and silica substrates. Refractive index, thickness, number of propagating modes, and attenuation coefficient were measured at 543.5, 632.8 and 1550 nm by the prism coupling technique. The synergism between the two hybrid precursors resulted in monomode planar waveguides with low losses in the infrared ( from 0.6-1.1 dB cm(-1)) which also support a number of propagating modes in the visible ( losses from 0.4-1.5 dB cm(-1)). Channel waveguides were also obtained by UV photopatterning using amplitude or phase masks and propagating modes were observed at 1550 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erbium activated SiO2 -HfO2 planar waveguides, doped with Er3+ concentrations ranging from 0.01 to 4 mol%, were prepared by sol-gel method. The films were deposited on v-SiO2 and silica-on-silicon substrates using dip-coating technique. The waveguides show high densification degree, effective intermingling of the two film components, and uniform surface morphology. The waveguide deposited on silica-on-silicon substrates shows one single propagation mode at 1.5μm, with a confinement coefficient of 0.81 and an attenuation coefficient of 0.8 dB/cm at 632.8nm. Emission in the C-telecommunication band was observed at room temperature for all the samples upon continuouswave excitation at 980 nm or 514.5 nm. The shape of the emission band corresponding to the 4I13/2 → 4I15/2 transition is found to be almost independent both on erbium content and excitation wavelength, with a FWHM between 44 and 48 nm. The 4I13/2 level decay curves presented a single-exponential profile, with a lifetime ranging between 1.1 - 6.6 ms, depending on the erbium concentration. Infrared to visible upconversion luminescence upon continuous-wave excitation at 980 nm was observed for all the samples. Channel waveguide in rib configuration was obtained by etching the active film in order to have a well confined mode at 1.5 μm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sol-gel method combined with a spin-coating technique has been successfully applied for the preparation of rare-earth doped silica:germania films used for the fabrication of erbium-doped waveguide amplifiers (EDWA), presenting several advantages over other methods for the preparation of thin films. As with other methods, the sol-gel route also shows some drawbacks, such as cracks related to the thickness of silica films and high hydrolysis rate of certain precursors such as germanium alkoxides. This article describes the preparation and optical characterization of erbium and ytterbium co-doped SiO2:GeO2 crack-free thick films prepared by the sol-gel route combined with a spin-coating technique using a chemically stable non-aqueous germanium oxide solution as an alternative precursor. The non-crystalline films obtained are planar waveguides exhibiting a single mode at 1,550 nm with an average thickness of 3.9 mu m presenting low percentages of porosity evaluated by the Lorentz-Lorenz Effective Medium Approximation, and low stress, according to the refractive index values measured in both transversal electric and magnetic polarizations. Weakly confining core layers (0.3% < Delta n < 0.75%) were obtained according to the refractive index difference between the core and buffer layers, suggesting that low-loss coupling EDWA may be obtained. The life time of the erbium I-4(13/2) metastable state was measured as a function of erbium concentration in different systems and based on these values it is possible to infer that the hydroxyl group was reduced and the formation of rare-earth clusters was avoided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica-based sol-gel waveguides activated by Er3+ ions are attractive materials for integrated optic devices. 70SiO(2)-30HfO(2) planar waveguides, doped with Er3+ concentrations ranging from 0.01 to 4 mol%, were prepared by sol-get route. The films were deposited on v-SiO2 and silica-on-silicon substrates, using dip-coating technique. The waveguides show a homogeneous surface morphology, high densification degree and uniform refractive index across the thickness. Emission in the C-telecommunication band was observed at room temperature for ill the samples upon excitation at 980 nm. The shape is found to be almost independent on erbium content, with a FWHM between 44 and 48 nm. The I-4(13/2) level decay curves presented a single-exponential profile, with a lifetime ranging between 1.1 and 6.7 ms, depending on the erbium concentration. The waveguide deposited on silica-on-silicon substrate supports one single propagation mode at 1.5 mum with a confinement coefficient of 0.85, and a losses of about 0.8 dB/cm at 632.8 nm. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erbium-activated silica-based planar waveguides were prepared by three different technological routes: RF-sputtering, sol-gel and ion exchange. Various parameters of preparation were varied in order to optimize the waveguides for operation in the NIR region. Particular attention was devoted to the minimization of the losses and the increase of the luminescence efficiency of the metastable I-4(13/2) state of the Er3+ ion. Waveguide properties were determined by m-line spectroscopy and loss measurements. Waveguide Raman and luminescence spectroscopy were used to obtain information about the structure of the prepared films and about the dynamical processes related to the luminescence of the Er3+ ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the application of a scalar finite element formulation for Ex (TE-like) modes in anisotropic planar and channel waveguides with diagonal permittivity tensor, diffused in both transversal directions. This extended formulation considers explicitly both the variations of the refractive index and their spatial derivates inside of each finite element. Dispersion curves for Ex modes in planar and channel waveguides are shown, and the results compared with solutions obtained by other formulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

70SiO2 - 30HfO2 planar waveguides, activated by Er3+ concentration ranging from 0.3 to 1 mol%, were prepared by solgel route, using dip-coating deposition on silica glass substrates. The waveguides showed high densification degree, effective intermingling of the two components of the film, and uniform surface morphology. Propagation losses of about 1 dB/cm were measured at 632.8 nm. When pumped with 987 nm or 514.5 nm continuous-wave laser light, the waveguides showed the 4I 13/2→4I15/2 emission band with a bandwidth of 48 nm. The spectral features were found independent both on erbium content and excitation wavelength. The 4I13/2 level decay curves presented a single exponential profile, with a lifetime between 2.9-5.0 ms, depending on the erbium concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Planar waveguides with low losses in the infrared (from 0.6-1.1 dB/cm) were prepared with sol-gel derived poly(oxyethylene)/siloxane hybrid doped with zirconium(IV) n-propoxide (ZPO) and methacryloxypropyltrimethoxysilane (MAPTMS). The doped nanohybrids were characterized by small angle X-ray scattering, 29Si nuclear magnetic resonance and photoluminescence spectroscopy and compared with the undoped hybrid material. The results indicate an effective interaction between the zirconium particles and the siliceous nanodomains. © 2005 Materials Research Socicty.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

70SiO(2)-30HfO(2) mol% planar waveguides, doped with Er3+ with concentrations ranging from 0.3 to 2 mol% were prepared by sol-gel route, using dip-coating deposition on vitreous-SiO2 substrates. Infrared-to-visible upconversion emission, upon excitation at 980 nm, has been observed for all the samples. The upconversion results in green, red and blue emissions. The investigation of the upconversion dynamic as a function of the Er3+ concentration and excitation power, show that processes such as excited state absorption and energy transfer upconversion are effective. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hybrid planar waveguides were prepared from Ti4+-acetylacetone (acac)-Ureasil sols deposited on glass substrates. Structural features have been investigated by spectroscopic measurements (Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS) and Raman scattering) and Small Angle X-ray Scattering (SAXS). Addition of Ti 4+-acac to the ureasil (Ti:Si molar ratio 1:1) leads to the formation of bonds between the Ti complex and the siloxane groups, whereas further addition of Ti4+ (Ti:Si molar ratio 5:1) leads to the additional formation of titanium-rich nanoclusters. The optical parameters of the waveguides such as refractive index, thickness, propagating modes and attenuation coefficient were measured at 632.8, 543.5 and 1550 nm by the prism coupling technique. The refractive index can be tuned by the Ti4+ relative content. The few microns thick planar waveguides support well confined propagating modes with low attenuation loss for all compositions. ©2006 Sociedade Brasileira de Química.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Planar waveguides with controlled refractive index were produced using thin films of sol-gel derived organic-inorganic hybrids, so called di-ureasils. Spectroscopic ellipsometry was used to characterize the films thickness and refractive index. UV-laser direct-writing method was used to produce Y-splitter structures with coupling ratio of 50% without the need of photoinitiators.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A procedure to model optical diffused-channel waveguides is presented in this work. The dielectric waveguides present anisotropic refractive indexes which are calculated from the proton concentration. The proton concentration inside the channel is calculated by the anisotropic 2D-linear diffusion equation and converted to the refractive indexes using mathematical relations obtained from experimental data, the arbitrary refractive index profile is modeled by a. nodal expansion in the base functions. The TE and TM-like propagation properties (effective index) and the electromagnetic fields for well-annealed proton-exchanged (APE) LiNbO3 waveguides are computed by the finite element method.