34 resultados para native populations


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The equilibrium dynamics of native and introduced blowflies is modelled using a density-dependent model of population growth that takes into account important features of the life-history in these flies. A theoretical analysis indicates that the product of maximum fecundity and survival is the primary determinant of the dynamics. Cochliomyia macellaria, a blowfly native to the Americas and the introduced Chrysomya megacephala and Chrysomya putoria, differ in their dynamics in that the first species shows a damping oscillatory behavior leading to a one-point equilibrium, whereas in the last two species population numbers show a two-point limit cycle. Simulations showed that variation in fecundity has a marked effect on the dynamics and indicates the possibility of transitions from one-point equilibrium to bounded oscillations and aperiodic behavior. Variation in survival has much less influence on the dynamics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Equilibrium dynamics in experimental populations of Chrysomya megacephala (F.) and C. putoria (Wiedemann), which have recently invaded the Americas, and the native species Cochliomyia macellaria (F.), were investigated using nonlinear difference equations. A theoretical analysis of the mathematical model using bifurcation theory established the combination of demographic parameters responsible for producing shifts in blowfly population dynamics from stable equilibria to bounded cycles and aperiodic behavior. Mathematical modeling shows that the populations of the 2 introduced Chrysomya species will form stable oscillations with numbers fluctuating 3-4 times in successive generations. However, in the native species C. macellaria, the dynamics is characterized by damping oscillations in population size, leading to a stable population level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we explored the stochastic population dynamics of three exotic blowfly species, Chrysomya albiceps, Chrysomya megacephala and Chrysomya putoria, and two native species, Cochliomyia macellaria and Lucilia eximia, by combining a density-dependent growth model with a two-patch metapopulation model. Stochastic fecundity, survival and migration were investigated by permitting random variations between predetermined demographic boundary values based on experimental data. Lucilia eximia and Chrysomya albiceps were the species most susceptible to the risk of local extinction. Cochliomyia macellaria, C. megacephala and C. putoria exhibited lower risks of extinction when compared to the other species. The simultaneous analysis of stochastic fecundity and survival revealed an increase in the extinction risk for all species. When stochastic fecundity, survival and migration were simulated together, the coupled populations were synchronized in the five species. These results are discussed, emphasizing biological invasion and interspecific interaction dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological control of Diatraea saccharalis is regarded as one of the best examples of successful classical biological control in Brazil. Since the introduction of the exotic parasitoid, Cotesia flavipes, from Pakistan at the beginning of the 1970s, decrease in D. saccharalis infestation in sugarcane fields has been attributed to the effectiveness of this agent. Recently, the native Tachinidae fly parasitoids (Lydella minense and Paratheresia claripalpis) have also been implicated in this success. However, quantitative data confirming the actual contribution of these agents to the control of D. saccharalis are rather limited. The purpose of this study was to investigate the dynamics of the interactions between D. saccharalis and its parasitoids, emphasizing the temporal patterns of parasitism. To investigate this question, a large data set comprising information collected from two sugarcane mills located in the state of São Paulo, Brazil (Barra and Sao Joao sugarcane mills), was analysed. Basically, the data set contained monthly information about the number of D. saccharalis larvae and their parasitoids in each sample (man-hour per sample), the sugarcane varieties cultivated, the age of the sugarcane plants (only at the Sao Joao sugarcane mill) as well as the sugarcane cut at sampling time. The data were collected from March 1984 to March 1997 and from May 1982 to December 1996 for the Barra and Sao Joao sugarcane mills, respectively. Temporal inverse density-dependent parasitism was predominant for both parasitoid species with respect to all spatial scales. Although the temporal pattern of parasitism was not directly density dependent, it was evident that the tachinids and C. flavipes presented positive numerical responses according to variations in D. saccharalis densities through time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Piper cernuum is a native plant of the Brazilian Atlantic rain forest. This work studies the distribution of allozyme diversity in P. cernuum natural populations in order to establish a strategy for sustainable management and conservation. Leaf samples were collected in two Brazilian states. High divergences among populations (F-SR = 0.380) and low divergences among regions (F-RT = -0.069) and among gaps of the same population (F-GT = 0.062) were found. No association between the geographical variation and the genetic distance was detected. An excess of heterozygotes was detected in the populations (F-IS = -0.170), suggesting selection in favor of heterozygotes. The results, and the fact that the species depends on constant gap formation for maintenance of its dynamism, suggest that the founder effect is largely responsible for the structuring of populations. For sustainable management, the maintenance of plants/reproductive branches in the gaps is of major importance. The genotypes produced in these gaps are responsible for the establishment of new gaps and are the foundation for new populations, maintaining the dynamics of allele movement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In blowflies, larval aggregation in patches of food can be both intra- and interspecific, depending upon the degree to which competitors are clumped among the patches. In the present study, the implications of spatial aggregation for larval competition was investigated in experimental populations of the introduced blowfly Chrysomya putoria and the native Cochliomyia macellaria, using data from survival to adulthood in a range of single- and double-species larval cultures. The reduction in C. macellaria survival rate in the presence of C. putoria suggests that the former species is the inferior competitor. The results on survival to adulthood for both species in single- and double-species cultures can be explained in the light of the relationship between the level of intra- and interspecific aggregation and the efficiency of the larval feeding process. The possible implications of these results for the population biology of both species in natural environments are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological control of Diatraea saccharalis is regarded as one of the best examples of successful classical biological control in Brazil. Since the introduction of the exotic parasitoid, Cotesia flavipes, the decrease in D. saccharalis infestation in sugarcane fields has been attributed to the effectiveness of this agent. Native Tachinidae fly parasitoids (Lydella minense and Paratheresia claripalpis) have also been implicated in the success. Quantitative data confirming the actual contribution of these agents to the control of D. saccharalis are, however, rather scant. The purpose of this study was to investigate the spatial pattern of parasitism of these parasitoids in D. saccharalis populations at two large spatial scales (fields and zones). To investigate this subject, a large data set comprising information collected from a sugarcane mill located in the state of São Paulo, Brazil (São João sugarcane mill) was analysed. When regressions between the proportion parasitism against host density were computed, the percentage of significant regressions with either a positive or a negative slope was very small at both spatial scales for both parasitoid species. Regressing the densities of tachinid-parasitized hosts against host densities per field showed that these parasitoids presented a 'moderate aggregative' response to host densities, as 53.33% of the regressions were positively significant. Cotesia flavipes was 'weakly aggregated' on host densities at the field level, because only 33.33% of the regressions were positively significant. At the zone level, neither aggregative nor spatial proportion parasitism responses were evident for either parasitoid species due to the small percentage of significant regressions computed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SNaPshot minisequencing reaction is in increasing use because of its fast detection of many polymorphisms in a single assay. In this work we described a highly sensitive single nucleotide polymorphisms (SNPs) typing method with detection of 42 mitochondrial DNA (mtDNA) SNPs in a single PCR and SNaPshot multiplex reaction in order to allow haplogroup classification in Latin American admixture population. We validated the panel typing 160 Brazilian individuals. DNA was extracted from blood spotted on filter paper using Chelex protocol. Forty SNPs were selected targeting haplogroup-specific mutations in Europeans, Africans and Asians (only precursors of Native Americans haplogroups A2, B2, C1, and D1) and two non-coding SNPs were chosen to increase the power of discrimination between individuals (SNPs positions 16,519 and 16,362). It was done using a modified version of a previously published multiplex SNaPshot minisequencing reaction established to resolve European haplogroups, adding SNPs targeting Africans (L0, L1, L2, L3, and L*) and Asians (A, B, C, and D) haplogroups based on SNPs described at PhyloTree.org build 2. PCR primers were designed using PerlPrimer software and checked with the Autodimer program. Thirty-three primer-pairs were used to amplify 42 SNPs. Using this panel, we were able to successfully classify 160 individuals into their correct haplogroups. Complete SNP profiles were obtained from 10. pg of total DNA. We conclude that it is possible to build and genotype more than 40 mtDNA SNPs in a single multiplex PCR and SNaPshot reaction, with sensitivity and reliability, resolving haplogroup classification in admixture populations. © 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although many Brazilian sugar mills initiate the fermentation process by inoculating selected commercial Saccharomyces cerevisiae strains, the unsterile conditions of the industrial sugar cane ethanol fermentation process permit the constant entry of native yeast strains. Certain of those native strains are better adapted and tend to predominate over the initial strain, which may cause problems during fermentation. In the industrial fermentation process, yeast cells are often exposed to stressful environmental conditions, including prolonged cell recycling, ethanol toxicity and osmotic, oxidative or temperature stress. Little is known about these S. cerevisiae strains, although recent studies have demonstrated that heterogeneous genome architecture is exhibited by some selected well-adapted Brazilian indigenous yeast strains that display high performance in bioethanol fermentation. In this study, 11 microsatellite markers were used to assess the genetic diversity and population structure of the native autochthonous S. cerevisiae strains in various Brazilian sugar mills. The resulting multilocus data were used to build a similarity-based phenetic tree and to perform a Bayesian population structure analysis. The tree revealed the presence of great genetic diversity among the strains, which were arranged according to the place of origin and the collection year. The population structure analysis revealed genotypic differences among populations; in certain populations, these genotypic differences are combined to yield notably genotypically diverse individuals. The high yeast diversity observed among native S. cerevisiae strains provides new insights on the use of autochthonous high-fitness strains with industrial characteristics as starter cultures at bioethanol plants. © 2013 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HLA-G has an important role in the modulation of the maternal immune system during pregnancy, and evidence that balancing selection acts in the promoter and 3′UTR regions has been previously reported. To determine whether selection acts on the HLA-G coding region in the Amazon Rainforest, exons 2, 3 and 4 were analyzed in a sample of 142 Amerindians from nine villages of five isolated tribes that inhabit the Central Amazon. Six previously described single-nucleotide polymorphisms (SNPs) were identified and the Expectation-Maximization (EM) and PHASE algorithms were used to computationally reconstruct SNP haplotypes (HLA-G alleles). A new HLA-G allele, which originated in Amerindian populations by a crossing-over event between two widespread HLA-G alleles, was identified in 18 individuals. Neutrality tests evidenced that natural selection has a complex part in the HLA-G coding region. Although balancing selection is the type of selection that shapes variability at a local level (Native American populations), we have also shown that purifying selection may occur on a worldwide scale. Moreover, the balancing selection does not seem to act on the coding region as strongly as it acts on the flanking regulatory regions, and such coding signature may actually reflect a hitchhiking effect.Genes and Immunity advance online publication, 3 October 2013; doi:10.1038/gene.2013.47.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distinct genetic structure in populations of Chrysoperla externa (Hagen) (Neuroptera, Chrysopidae) shown by genetic markers ISSR and COI gene. Green lacewings are generalist predators, and the species Chrysoperla externa presents a great potential for use in biological control of agricultural pests due to its high predation and reproduction capacities, as well as its easy mass rearing in the laboratory. The adaptive success of a species is related to genetic variability, so that population genetic studies are extremely important in order to maximize success of the biological control. Thus, the present study used nuclear (Inter Simple Sequence Repeat - ISSR) and mitochondrial (Cytochrome Oxidase I - COI) molecular markers to estimate the genetic variability of 12 populations in the São Paulo State, Brazil, as well as the genetic relationships between populations. High levels of genetic diversity were observed for both markers, and the highest values of genetic diversity appear associated with municipalities that have the greatest areas of native vegetation. There was high haplotype sharing, and there was no correlation between the markers and the geographic distribution of the populations. The AMOVA indicated absence of genetic structure for the COI gene, suggesting that the sampled areas formed a single population unit. However, the great genetic differentiation among populations showed by ISSR demonstrates that these have been under differentiation after their expansion or may also reflect distinct dispersal behavior between males and females.