21 resultados para molecular pathology
Resumo:
Delay in diagnosis of pulmonary and other forms of tuberculosis (TB) can be fatal, particularly in HIV-infected patients. Hence, techniques based on nucleic acid amplification, which are both rapid and of high specificity and sensitivity, are now widely used and recommended for laboratories that diagnose TB. In the present study, diagnostic methods based on mycobacterial DNA amplification were evaluated in comparative trials alongside tradicional bacterial methods, using negative smear samples from patients with clinically-suspected TB (sputum samples from 25 patients with suspected pulmonary TB, urine samples from two patients with suspected renal TB and cerebrospinal fluid samples from one patient with suspected meningeal TB). A specificity of 100% was achieved with DNA amplification methods and tradicional culture/identification methods, in relation to clinical findings and treatment results. For the smear-negative sputa, conventional PCR for M. tuberculosis was positive in 62% of suspected lung TB case, showing the same sensitivity as bacterial identification. Both techniques failed in the detection of extra-pulmonary samples. Nested PCR showed, after species-specific amplification, a sensitivity of 100% for M. avium and 85% for M. tuberculosis. For extra-pulmonary smear-negative samples, only Nested PCR detected M. tuberculosis and all cases were confirmed clinically. Nested PCR, in which two-step amplification reactions are performed, can identify the two most important mycobacteria in human pathology quickly and directly from clinical spicimens.
Resumo:
The degree of genetic and pathologic variation exhibited by a turkey Coronavirus (TCoV) strain was investigated after nine serial passages in 25-day-old turkey embryos obtained from wild broad-breasted bronze breeders. In spite of spleen, liver, kidneys, cloacal bursa and thymus have been collected and analysed, the main histopathological changes were only documented in the intestine sections. Microscopic lesions were characterized as mild enteritis, low degree of enterocyte vacuolization and detachment of the intestinal villous after five consecutive passages and were considered absent in the last passages. Genealogic analysis based on S1 and S2 DNA sequences suggested that Brazilian isolate might be considered as originated from TCoV strains circulating in the United States, as 100% identity with TCoV-Gl strain. Although S1 S2 sequences from each passage revealed no significant point mutations, and no correlation could be speculate between S2 nucleotide changes and pathologic features in infected embryos. This is the first demonstration of wild turkey embryos as a model for TCoV isolation and propagation.
Resumo:
Hereditary myotonia caused by mutations in CLCN1 has been previously described in humans, goats, dogs, mice and horses. The goal of this study was to characterize the clinical, morphological and genetic features of hereditary myotonia in Murrah buffalo. Clinical and laboratory evaluations were performed on affected and normal animals. CLCN1 cDNA and the relevant genomic region from normal and affected animals were sequenced. The affected animals exhibited muscle hypertrophy and stiffness. Myotonic discharges were observed during EMG, and dystrophic changes were not present in skeletal muscle biopsies; the last 43 nucleotides of exon-3 of the CLCN1 mRNA were deleted. Cloning of the genomic fragment revealed that the exclusion of this exonic sequence was caused by aberrant splicing, which was associated with the presence of a synonymous SNP in exon-3 (c.396C>T). The mutant allele triggered the efficient use of an ectopic 5' splice donor site located at nucleotides 90-91 of exon-3. The predicted impact of this aberrant splicing event is the alteration of the CLCN1 translational reading frame, which results in the incorporation of 24 unrelated amino acids followed by a premature stop codon. Copyright © 2012 Elsevier B.V. All rights reserved.
Resumo:
In healthy individuals, Candida species are considered commensal yeasts of the oral cavity. However, these microorganisms can also act as opportunist pathogens, particularly the so-called non-albicans Candida species that are increasingly recognized as important agents of human infection. Several surveys have documented increased rates of C. glabrata, C. tropicalis, C. guilliermondii, C. dubliniensis, C. parapsilosis, and C. krusei in local and systemic fungal infections. Some of these species are resistant to antifungal agents. Consequently, rapid and correct identification of species can play an important role in the management of candidiasis. Conventional methods for identification of Candida species are based on morphological and physiological attributes. However, accurate identification of all isolates from clinical samples is often complex and time-consuming. Hence, several manual and automated rapid commercial systems for identifying these organisms have been developed, some of which may have significant sensitivity issues. To overcome these limitations, newer molecular typing techniques have been developed that allow accurate and rapid identification of Candida species. This study reviewed the current state of identification methods for yeasts, particularly Candida species. © 2013 John Wiley & Sons A/S.
Resumo:
Pós-graduação em Patologia - FMB
Resumo:
Pós-graduação em Patologia - FMB