25 resultados para mining workforce
Resumo:
The multi-relational Data Mining approach has emerged as alternative to the analysis of structured data, such as relational databases. Unlike traditional algorithms, the multi-relational proposals allow mining directly multiple tables, avoiding the costly join operations. In this paper, is presented a comparative study involving the traditional Patricia Mine algorithm and its corresponding multi-relational proposed, MR-Radix in order to evaluate the performance of two approaches for mining association rules are used for relational databases. This study presents two original contributions: the proposition of an algorithm multi-relational MR-Radix, which is efficient for use in relational databases, both in terms of execution time and in relation to memory usage and the presentation of the empirical approach multirelational advantage in performance over several tables, which avoids the costly join operations from multiple tables. © 2011 IEEE.
Resumo:
Multi-relational data mining enables pattern mining from multiple tables. The existing multi-relational mining association rules algorithms are not able to process large volumes of data, because the amount of memory required exceeds the amount available. The proposed algorithm MRRadix presents a framework that promotes the optimization of memory usage. It also uses the concept of partitioning to handle large volumes of data. The original contribution of this proposal is enable a superior performance when compared to other related algorithms and moreover successfully concludes the task of mining association rules in large databases, bypass the problem of available memory. One of the tests showed that the MR-Radix presents fourteen times less memory usage than the GFP-growth. © 2011 IEEE.
Resumo:
This investigation reports the results of a study realized in an area related to the development of sand mining activities, which belongs to Sibelco Mineração Ltd. The site is located around Analândia municipality, nearly in the center of São Paulo State, Brazil. Hydrochemical analyses of groundwater were realized under different periods of time, with the aim of evaluating the possibility of release of several constituents to the liquid phase, which may be a source of pollution of the surface hydrological resources and of the deeper Guarani aquifer. This is because the site is located at the recharge area of Guarani aquifer and some tributaries from Corumbataí river may also be suffering contamination, implying on the impoverishment of the water quality that are very important resources in the region, as they are extensively used for drinking purposes, among others.© 2011 WIT Press.
Resumo:
The increase in the number of spatial data collected has motivated the development of geovisualisation techniques, aiming to provide an important resource to support the extraction of knowledge and decision making. One of these techniques are 3D graphs, which provides a dynamic and flexible increase of the results analysis obtained by the spatial data mining algorithms, principally when there are incidences of georeferenced objects in a same local. This work presented as an original contribution the potentialisation of visual resources in a computational environment of spatial data mining and, afterwards, the efficiency of these techniques is demonstrated with the use of a real database. The application has shown to be very interesting in interpreting obtained results, such as patterns that occurred in a same locality and to provide support for activities which could be done as from the visualisation of results. © 2013 Springer-Verlag.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study aimed to evaluate the sediment quality in the estuarine protected area known as Canan,ia-Iguape-Peruibe (CIP-PA), located on the southeastern coast of Brazil. The study was designed considering possible negative effects induced by the city of Canan,ia on the sediment quality of surrounding areas. This evaluation was performed using chemical and ecotoxicological analyses. Sediments were predominantly sandy, with low CaCO3 contents. Amounts of organic matter varied, but higher contents occurred closer to the city, as well as did Fe and Total Recoverable Oils and Greases (TROGs) concentrations. Contamination by Cd and Cu was revealed in some samples, while concentrations of Zn were considered low. Chronic toxicity was detected in all tested sediments and acute toxicity occurred only in sediments collected near the city. The principal component analysis (PCA) revealed an association among Cd, Cu, Fe, TROG, fines, organic matter, CaCO3, and chronic toxicity, whereas acute toxicity was found to be associated with Zn and mud. However, because Zn levels were low, acute toxicity was likely due to a contaminant that was not measured. Results show that there is a broad area within the CIP-PA that is under the influence of mining activities (chronic toxicity, moderate contamination by metals), whereas poorer conditions occur closer to Canan,ia (acute toxicity); thus, the urban area seems to constitute a relevant source of contaminants for the estuarine complex. These results show that contamination is already capable of producing risks for the local aquatic biota, which suggests that the CIP-PA effectiveness in protecting estuarine biota may be threatened.
Resumo:
Background: Once multi-relational approach has emerged as an alternative for analyzing structured data such as relational databases, since they allow applying data mining in multiple tables directly, thus avoiding expensive joining operations and semantic losses, this work proposes an algorithm with multi-relational approach. Methods: Aiming to compare traditional approach performance and multi-relational for mining association rules, this paper discusses an empirical study between PatriciaMine - an traditional algorithm - and its corresponding multi-relational proposed, MR-Radix. Results: This work showed advantages of the multi-relational approach in performance over several tables, which avoids the high cost for joining operations from multiple tables and semantic losses. The performance provided by the algorithm MR-Radix shows faster than PatriciaMine, despite handling complex multi-relational patterns. The utilized memory indicates a more conservative growth curve for MR-Radix than PatriciaMine, which shows the increase in demand of frequent items in MR-Radix does not result in a significant growth of utilized memory like in PatriciaMine. Conclusion: The comparative study between PatriciaMine and MR-Radix confirmed efficacy of the multi-relational approach in data mining process both in terms of execution time and in relation to memory usage. Besides that, the multi-relational proposed algorithm, unlike other algorithms of this approach, is efficient for use in large relational databases.
Spatial Data Mining to Support Environmental Management and Decision Making - A Case Study in Brazil
Resumo:
The aim of this study was to assess the dentistry profile, based on social and demographic data, post-graduation formation, and to verify the insertion of dental graduates in the labour force. The participants were professionals graduated from a Brazilian Public Dental School, between 2000 and 2010. An instrument was sent by mail and/or e-mail to them. It was used Kruskal Wallis Test. Among 1047 questionnaires, 189 returned and 65.6% were answered by female. In relation to post-graduation course, 57.7% of professionals performed it, however 56.9% not attended only in their area; 66.6% of professionals are concentrated in cities larger than 100 thousand habitants. There was association between income and gender, and others. The predominant work modality was self-employed. Among the total, 36.5% want to work part-time in dentistry. The female gender was predominant and there was wage discrepancy between genders. The professionals have been concentrated in largest cities.
Resumo:
The increase in new electronic devices had generated a considerable increase in obtaining spatial data information; hence these data are becoming more and more widely used. As well as for conventional data, spatial data need to be analyzed so interesting information can be retrieved from them. Therefore, data clustering techniques can be used to extract clusters of a set of spatial data. However, current approaches do not consider the implicit semantics that exist between a region and an object’s attributes. This paper presents an approach that enhances spatial data mining process, so they can use the semantic that exists within a region. A framework was developed, OntoSDM, which enables spatial data mining algorithms to communicate with ontologies in order to enhance the algorithm’s result. The experiments demonstrated a semantically improved result, generating more interesting clusters, therefore reducing manual analysis work of an expert.