129 resultados para micro-raman spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural and textural studies of a CuO/TiO2 System modified by cerium oxide were conducted using Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and N-2 absorption (BET specific surface area). The introduction of a minor amount of CeO2 (Ce0.09Ti0.82O1.91CU0.09 sample) resulted in a material with the maximum surface area value. The results of Raman spectroscopy revealed the presence of only two crystalline phases, TiO2 anatase and CeO2 cerianite, with well-dispersed copper species. TEM micrographs showed a trend toward smaller TiO2 crystallites when the cerium oxide content was increased. The XPS analysis indicated the rise of a second peak in Ti 2p spectra with the increasing amount of CeO2 located at higher binding energies than that due to the Till in a tetragonal symmetry. The CuO/TiO2 system modified by CeO2 displayed a superior performance for methanol dehydrogenation than the copper catalyst supported only on TiO2 or CeO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vibrational spectra of palladium phthalocyanine (PdPc) evaporated thin solid films are reported, including the resonance Raman scattering, surface-enhanced resonance Raman scattering (SERRS) and SERRS mapping of the film surface using micro-Raman spectroscopy with 633 nm laser radiation. SERRS of PdPc was obtained by evaporating an overlayer of Ag nanoparticles on to the PdPc film on glass. The SERRS enhancement factor is estimated as similar to10(4) with reference to PdPc evaporated films on glass. The molecular organization of the PdPc evaporated films was probed using transmission and reflection-absorption infrared spectra. It was established that a random molecular distribution found in PdPc evaporated films is independent of temperature. No evidence of thermal degradation due to thermal annealing was found in the films. Electronic absorption and emission spectra are also discussed. Copyright (C) 2002 John Wiley Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: the aim of this study was to assess, through Raman spectroscopy, the incorporation of calcium hydroxyapatite (CHA; similar to 960 cm(-1)), and scanning electron microscopy (SEM), the bone quality on the healing bone around dental implants after laser photobiomodulation ( lambda 830 nm). Background Data: Laser photobiomodulation has been successfully used to improve bone quality around dental implants, allowing early wearing of prostheses. Methods: Fourteen rabbits received a titanium implant on the tibia; eight of them were irradiated with lambda 830 nm laser ( seven sessions at 48-h intervals, 21.5 J/cm(2) per point, 10 mW, phi similar to 0.0028 cm(2), 86 J per session), and six acted as control. The animals were sacrificed 15, 30, and 45 days after surgery. Specimens were routinely prepared for Raman spectroscopy and SEM. Eight readings were taken on the bone around the implant. Results: the results showed significant differences on the concentration of CHA on irradiated and control specimens at both 30 and 45 days after surgery ( p < 0.001). Conclusion: It is concluded that infrared laser photobiomodulation does improve bone healing, and this may be safely assessed by Raman spectroscopy or SEM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitreous samples were prepared in the (100 2 x) NaPO3-x WO3 (0 <= x <= 70) glass forming system using conventional melting-quenching methods. The structural evolution of the vitreous network was monitored as a function of composition by thermal analysis, Raman spectroscopy and high resolution one- and two-dimensional P-31 solid state NMR. Addition of WO3 to the NaPO3 glass melt leads to a pronounced increase in the glass transition temperatures, suggesting a significant increase in network connectivity. At the same time Raman spectra indicate that up to about 30 mol% WO3 the tungsten atoms are linked to some non-bridging oxygen atoms (W-O- or W=O bonded species), suggesting that the network modifier sodium oxide is shared to some extent between both network formers. W-O- W bond formation occurs only at WO3 contents exceeding 30 mol%. P-31 magic angle spinning (MAS)-NMR spectra, supported by two-dimensional J-resolved spectroscopy, allow a clear distinction between species having two, one, and zero P-O-P linkages. The possible formation of some anionic tungsten sites suggested from the Raman data implies an average increase in the degree of polymerization for the phosphorus species, which would result in diminished P-31/Na-23 interactions. This prediction is indeed confirmed by P-31{Na-23} and Na-23{P-31} rotational echo double resonance (REDOR) NMR results, which indicate that successive addition of WO3 to NaPO3 glass significantly diminishes the strength of phosphorus-sodium dipole-dipole couplings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blends possessing the elastomeric properties of natural rubber (NR) and the conducting properties of conducting polymer (polyaniline, PANI) were obtained, which are promising for further application in deformation sensors. Blends containing 20% (v/v) of PANI in 80% of NR latex were fabricated by casting in the form of free-standing films and treated either with HCl or with corona discharge, which lead PANI to its conducting state (doping process). Characterization was carried out by Raman spectroscopy, d.c. conductivity and thermogravimetric analysis. Evidence for chemical interaction between PANI and NR was observed, which allowed the conclusion that the NR latex itself is able partially to induce both the primary doping of PANI (by protonation) and the secondary doping of PANI (by changing the chain conformation). Further improvement in the primary doping could be obtained for the blends either by corona discharge or by exposing them to HCl the electrical conductivity reached in the blends was dependent on the doping conditions used, as observed by Raman scattering. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the phase transition behavior of Pb0.76Ca0.24TiO3 thin films using Raman scattering and dielectric measurement techniques. We also have studied the leakage current conduction mechanism as a function of temperature for these thin films on platinized silicon substrates. A Pb0.76Ca0.24TiO3 thin film was prepared using a soft chemical process, called the polymeric precursor method. The results showed that the dependence of the dielectric constant upon the frequency does not reveal any relaxor behavior. However, a diffuse character-type phase transition was observed upon transformation from a cubic paraelectric phase to a tetragonal ferroelectric phase. The temperature dependency of Raman scattering spectra was investigated through the ferroelectric phase transition. The soft mode showed a marked dependence on temperature and its disappearance at about 598 K. on the other hand, Raman modes persist above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive above the phase transition temperature. The origin of these modes must be interpreted in terms of a local breakdown of cubic symmetry by some kind of disorder. The lack of a well-defined transition temperature suggested a diffuse-type phase transition. This result corroborate the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in the thin film. The leakage current density of the PCT24 thin film was studied at elevated temperatures, and the data were well fitted by the Schottky emission model. The Schottky barrier height of the PCT24 thin film was estimated to be 1.49 eV. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitreous samples were prepared in the (100 - x)% NaPO3-x% MoO3 (0 <= x <= 70) glass-forming system by a modified melt method that allowed good optical quality samples to be obtained. The structural evolution of the vitreous network was monitored as a function of composition by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), Raman scattering, and solid-state nuclear magnetic resonance (NMR) for P-31, Na-23, and Mo-95 nuclei. Addition of MoO3 to the NaPO3 glass melt leads to a pronounced increase in the glass transition temperatures up to x = 45, suggesting a significant increase in network connectivity. For this same composition range, vibrational spectra suggest that the Mo6+ ions are bonded to some nonbridging oxygen atoms (Mo-O- or Mo=O bonded species). Mo-O-Mo bond formation occurs only at MoO3 contents exceeding x = 45. P-31 magic-angle spinning (MAS) NMR spectra, supported by two-dimensional J-resolved spectroscopy, allow a clear distinction between species having two, one, and zero P-O-P linkages. These sites are denoted as Q(2Mo)((2)), Q(1Mo)((2)), and Q(0Mo)((2)), respectively. For x < 0.45, the populations of these sites can be described along the lines of a binary model, according to which each unit of MoO3 converts two Q(nMo)((2)) sites into two Q((n+1)Mo)((2)) sites (n = 0, 1). This structural model is consistent with the presence of tetrahedral Mo(=O)(2)(O-1/2)(2) environments. Indeed, Mo-95 NMR data suggest that the majority of the molybdenum species are four-coordinated. However, the presence of additional six-coordinate molybdenum in the MAS NMR spectra indicates that the structure of these glasses may be more complicated and may additionally involve sharing of network modifier oxide between the network formers phosphorus and molybdenum. This latter hypothesis is further supported by Na-23{P-31} rotational echo double resonance (REDOR) data, which clearly reveal that the magnetic dipole-dipole interactions between P-31 and Na-23 are increasingly diminished with increasing molybdenum content. The partial transfer of modifier from the phosphate to the molybdate network former implies a partial repolymerization of the phosphate species, resulting in the formation of Q(nMo)((3)) species and accounting for the observed increase in the glass transition temperature with increasing MoO3 content that is observed in the composition range 0 <= x <= 45. Glasses with MoO3 contents beyond x = 45 show decreased thermal and crystallization stability. Their structure is characterized by isolated phosphate species [most likely of the P(OMo)(4) type] and molybdenum oxide clusters with a large extent of Mo-O-Mo connectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extended X-ray absorption fine spectroscopy (EXAFS) and Raman scattering studies of InF3-BaF2 and InF3-SrF2 binary glasses are reported. For all compositions, the local structure of the glasses is built with InF6 units. For all glasses studied, the indium neighbour's number and the In-F mean bond length are equal to the values of the InF3 crystalline phase (6 and 0.205 nm, respectively). © 1996 Chapman & Hall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The CaSnO3 perovskite is investigated under geochemical pressure, up to 25 GPa, by means of periodic ab initio calculations performed at B3LYP level with local Gaussian-type orbital basis sets. Structural, elastic, and spectroscopic (phonon wave-numbers, infrared and Raman intensities) properties are fully characterized and discussed. The evolution of the Raman spectrum of CaSnO3 under pressure is reported to remarkably agree with a recent experimental determination [J. Kung, Y. J. Lin, and C. M. Lin, J. Chem. Phys. 135, 224507 (2011)] as regards both wave-number shifts and intensity changes. All phonon modes are symmetry-labeled and bands assigned. The single-crystal total spectrum is symmetry-decomposed into the six directional spectra related to the components of the polarizability tensor. The infrared spectrum at increasing pressure is reported for the first time and its main features discussed. All calculations are performed using the CRYSTAL14 program, taking advantage of the new implementation of analytical infrared and Raman intensities for crystalline materials. (C) 2015 AIP Publishing LLC.