55 resultados para liver damage
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Patologia - FMB
Resumo:
Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Background: The liver is an important organ for its ability to transform xenobiotics, making the liver tissue a prime target for toxic substances. The carotenoid bixin present in annatto is an antioxidant that can protect cells and tissues against the deleterious effects of free radicals. In this study, we evaluated the protective effect of bixin on liver damage induced by carbon tetrachloride (CCl4) in rats.Results: The animals were divided into four groups with six rats in each group. CCl4 (0.125 mL kg(-1) body wt.) was injected intraperitoneally, and bixin (5.0 mg kg(-1) body wt.) was given by gavage 7 days before the CCl4 injection. Bixin prevented the liver damage caused by CCl4, as noted by the significant decrease in serum aminotransferases release. Bixin protected the liver against the oxidizing effects of CCl4 by preventing a decrease in glutathione reductase activity and the levels of reduced glutathione and NADPH. The peroxidation of membrane lipids and histopathological damage of the liver was significantly prevented by bixin treatment.Conclusion: Therefore, we can conclude that the protective effect of bixin against hepatotoxicity induced by CCl4 is related to the antioxidant activity of the compound.
Resumo:
An experiment was conducted to evaluate the effects of two levels of the β-(1→3,1→6)-d-glucan (0 and 500ppm) from yeast Saccharomyces cerevisiae and two levels of energy (3300 and 3450kcalMEkg(-1)) on the hematological, immunological and, biochemical profiles of thirty-six 21-days-old weaned piglets, challenged with 150μgkg(-1) of BW lipopolysaccharide (LPS) from Escherichia coli serotype 055:B5. The experimental design was a randomized complete block design in a 2×2 factorial arrangement with nine replicates per treatment and, one animal per experimental unit. The data were analyzed in accordance with the multivariate analysis procedure of SAS and, the treatment means of parametric and non-parametric data were compared by Bonferroni's test (P<0.05) and, by Dunn's test (P<0.05), respectively. The data of the blood profiles of alanine aminotransferase, alkaline phosphatase and, creatinine showed that LPS did not cause kidney or liver damage in the animals. The addition of beta-glucan in the diets did not prove the robustness of its effect and biological relevance when provided with low nutrient-density. However, its addition combined with the high-nutrient-density diets showed less marked hypoglobulinemia in piglets, which may have contributed to the decreasing of the synthesis of inflammatory mediators.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fluoride has been widely used in dentistry as a caries prophylactic agent. However, there has been some speculation that excess fluoride could cause an impact on genome integrity. In the current study, the potential DNA damage associated with exposure to fluoride was assessed in cells of blood, liver, kidney, thyroid gland and urinary bladder by the single cell gel (comet) assay. Male Wistar rats aging 75 days were distributed into seven groups: Groups 1 (control), 2, 3, 4, 5, 6 and 7 received 0 (deionized water), 10, 20, 40, 60, 80 and 100 mgF/Kg body weight from sodium fluoride (NaF), respectively, by gastrogavage. These groups were killed at 2 h after the administration of the fluoride doses. The level of DNA strand breaks did not increase in all organs evaluated and at all doses of NaF tested, as depicted by the mean tail moment. Taken together, our results suggest that oral exposure to NaF did not result in systemic genotoxic effect in multiple organs related to fluoride toxicity. Since DNA damage is an important step in events leading to carcinogenesis, this study represents a relevant contribution to the correct evaluation of the potential health risk associated with chemical exposure.
Resumo:
The effects of crude extracts of the mushroom Agaricus blazei Murrill (Agaricaceae) on both DNA damage and placental form glutathione S-transferase (GST-P)-positive liver foci induced by diethylnitrosamine (DEN) were investigated. Six groups of adult male Wistar rats were used. For two weeks, animals of groups 3 to 6 were treated with three aqueous solutions of A. blazei (mean dry weight of solids being 1.2, 5.6, 11.5 and 11.5 mg/ml, respectively). After this period, groups 2 to 5 were given a single ip injection 200 mg/kg DEN and groups 1 and 6 were treated with 0.9% NaCl. All animals were subjected to 70% partial hepatectomy at week five and sacrificed 4, 24 and 48 h or 8 weeks after DEN or 0.9% NaCl treatments (10th week after the beginning of the experiment). The alkaline comet assay and GST-P-positive liver foci development were used to evaluate the influence of the mushroom extracts on liver cell DNA damage and on the initiation of liver carcinogenesis, respectively. Previous treatment with the highest concentration of A. blazei (11.5 mg/ml) significantly reduced DNA damage, indicating a protective effect against DEN-induced liver cytotoxicity/genotoxicity. However, the same dose of mushroom extract significantly increased the number of GST-P-positive liver foci.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Toxoplasmosis is an anthropozoonotic widespread disease, caused by the coccidian protozoan parasite Toxoplasma gondii. Since there are no data regarding the genotoxicity of the parasite in vivo, this study was designed to evaluate the genotoxic potential of the toxoplasmosis on isogenic mice with normal diet or under dietary restriction and submitted to a treatment with sulfonamide (375 mug/kg per day). DNA damage was assessed in peripheral blood, liver and brain cells using the comet assay (tail moment). The results for leucocytes showed increases in the mean tail moment in mice under dietary restriction; in infected mice under normal diet; in infected, sulfonamide-treated mice under normal diet; in infected mice under dietary restriction and in infected sulfonamide-treated mice under dietary restriction. In liver and brain cells, no statistically significant difference was observed for the tail moment. These results indicated that dietary restriction and T. gondii were able to induce DNA damage in peripheral blood cells, as detected by the comet assay. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Annatto (Bixa orellana L.) is a natural food colorant extensively used in many processed foods, especially dairy products. The lower cost of production and the low toxicity, make annatto a very attractive and convenient pigment in substitution to the many synthetic colorants. In the present study we investigate the carcinogenic and anticarcinogenic effects of dietary annatto in Wistar rat liver using the preneoplastic glutathione S-transferase (GST-P) foci and DNA damage biomarkers. Annatto, containing 5% bixin, was administered in the diet at concentrations of 20, 200, and 1000 ppm (0.07; 0.80 and 4.23 bixin/kg body wt/day, respectively), continuously during 2 weeks before, or 8 weeks after DEN treatment (200 mg/kg body wt, i.p.), to evaluate its effect on the liver-carcinogenesis medium-term bioassay. The comet assay was used to investigate the modifying potential of annatto on DEN (20 mg/kg body wt)-induced DNA damage. The results showed that annatto was neither genotoxic nor carcinogenic at the highest concentration tested (1000 ppm). No protective effects were also observed in both GST-P foci development and comet assays. In conclusion, in such experimental conditions, annatto shows no hepatocarcinogenic effect or modifying potential against DEN-induced DNA damage and preneoplastic foci in the rat liver. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Since chlorhexidine is effective against microorganisms, it is widely recommended in dentistry. However, studies have provided evidence that chlorhexidine is toxic for a variety of cell types. In order to identify potential genotoxins in different cell types, the purpose of this study was to investigate whether chlorhexidine digluconate is able to cause, in terms of DNA damage, alterations in leukocytes, liver, kidney and urinary bladder by the single cell gel (comet) assay. Ten male Wistar rats were divided into two groups: a negative control and the experimental group treated with 3 ml of 0.12% chlorhexidine digluconate by gavage once a day for 8 days. Statistically significant increases of DNA damage was observed in leukocytes and kidney cells of the chlorhexidine digluconate treated group as depicted by the mean tail moment. Taken together, the data indicate that leukocytes and kidney cells are potential targets for primary DNA damage following oral exposure to chlorhexidine digluconate as detected by single cell gel (comet) assay. (c) 2006 Elsevier GmbH. All rights reserved.