142 resultados para linear rank regression model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Random regression models have been widely used to estimate genetic parameters that influence milk production in Bos taurus breeds, and more recently in B. indicus breeds. With the aim of finding appropriate random regression model to analyze milk yield, different parametric functions were compared, applied to 20,524 test-day milk yield records of 2816 first-lactation Guzerat (B. indicus) cows in Brazilian herds. The records were analyzed by random regression models whose random effects were additive genetic, permanent environmental and residual, and whose fixed effects were contemporary group, the covariable cow age at calving (linear and quadratic effects), and the herd lactation curve. The additive genetic and permanent environmental effects were modeled by the Wilmink function, a modified Wilmink function (with the second term divided by 100), a function that combined third-order Legendre polynomials with the last term of the Wilmink function, and the Ali and Schaeffer function. The residual variances were modeled by means of 1, 4, 6, or 10 heterogeneous classes, with the exception of the last term of the Wilmink function, for which there were 1, from 0.20 to 0.33. Genetic correlations between adjacent records were high values (0.83-0.99), but they declined when the interval between the test-day records increased, and were negative between the first and last records. The model employing the Ali and Schaeffer function with six residual variance classes was the most suitable for fitting the data. © FUNPEC-RP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering the importance of spatial issues in transport planning, the main objective of this study was to analyze the results obtained from different approaches of spatial regression models. In the case of spatial autocorrelation, spatial dependence patterns should be incorporated in the models, since that dependence may affect the predictive power of these models. The results obtained with the spatial regression models were also compared with the results of a multiple linear regression model that is typically used in trips generation estimations. The findings support the hypothesis that the inclusion of spatial effects in regression models is important, since the best results were obtained with alternative models (spatial regression models or the ones with spatial variables included). This was observed in a case study carried out in the city of Porto Alegre, in the state of Rio Grande do Sul, Brazil, in the stages of specification and calibration of the models, with two distinct datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com o objetivo de obter uma equação que, através de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Brachiaria decumbens Stapf. e Brachiaria brizantha (Hochst.) Stapf., estudaram-se correlações entre a área foliar real (Sf) e parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. Todas as equações, exponenciais, geométricas ou lineares simples, permitiram boas estimativas da área foliar. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, considerando o coeficiente linear igual a zero. Desse modo, a estimativa da área foliar de B. decumbens pode ser feita pela fórmula Sf = 0,9810 x (C x L), ou seja, 98,10% do produto entre o comprimento ao longo da nervura principal e a largura máxima, enquanto que, para a B. brizantha a estimativa da área foliar pode ser feita pela fórmula SF = 0,7468 x (C x L), ou seja 74,68% do produto entre o comprimento ao longo da nervura principal e a largura máxima da folha.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this research was to obtain a mathematical equation to estimate the leaf area of Ageratum conyzoides based on linear measures of its leaf blade. Correlation studies were done using real leaf area (Sf), leaf length (C) and the maximum leaf width (L), in about 200 leaf blades. The evaluated statistic models were: linear Y = a + bx; simple linear Y = bx; geometric Y = ax(b); and exponential Y = ab(x). The evaluated linear, exponential and geometric models can be used in the billygoat weed leaf area estimation. In the practical sense, the simple linear regression model is suggested using the C*L multiplication product and taking the linear coefficient equal to zero, because it showed weak-alteration on sum of squares error and satisfactory residual analysis. Thus, an estimate of A conyzoides leaf area can be obtained using the equation Sf = 0.6789*(C*L), with a determination coefficient of 0.8630.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com o objetivo de obter uma equação matemática que, através de parâmetros lineares dimensionais das folhas, permitisse a estimativa da área foliar de Cissampelos glaberrima, estudaram-se relações entre a área foliar real (Sf) e os parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L) perpendicular à nervura principal. As equações lineares simples, exponenciais e geométricas obtidas podem ser usadas para estimação da área foliar da falsa parreira-brava. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, usando-se a equação de regressão Sf = 0,7878 x (C x L), que equivale a tomar 78,78% do produto entre o comprimento ao longo da nervura principal e a largura máxima, com coeficiente de correlação de 0,9307.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com o objetivo de obter uma equação que, por meio de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Brachiaria plantaginea, estudaram-se relações entre a área foliar real (Sf) e os parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. As equações lineares simples, exponenciais e geométricas obtidas podem ser usadas para estimação da área foliar do capim-marmelada. do ponto de vista prático, deve-se optar pela equação linear simples, envolvendo o produto C x L, usando-se a equação de regressão Sf = 0,7338 x (C x L), o que equivale a tomar 73,38% do produto entre o comprimento ao longo da nervura principal e a largura máxima, com um coeficiente de determinação de 0,8754.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com o objetivo de obter uma equação que, por meio de parâmetros lineares dimensionais das folhas, permitisse a estimativa da área foliar de Ipomoea hederifolia e Ipomoea nil, estudaram-se correlações entre a área foliar real (Sf) e os parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. Todas as - equações exponenciais, geométricas ou lineares simples - permitiram boas estimativas da área foliar. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, considerando-se o coeficiente linear igual a zero. Desse modo, a estimativa da área foliar de I. hederifolia pode ser feita pela fórmula Sf = 0,7583 x (C x L), ou seja, 75,83% do produto entre o comprimento ao longo da nervura principal e a largura máxima, ao passo que, para I. nil, a estimativa da área foliar pode ser feita pela fórmula Sf = 0,6122 x (C x L), ou seja, 61,22% do produto entre o comprimento ao longo da nervura principal e a largura máxima da folha.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A estimativa da área foliar pode auxiliar na compreensão de relações de interferência entre plantas daninhas e cultivadas. Com o objetivo de obter uma equação que, por meio de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Sida cordifolia e Sida rhombifolia, estudaram-se as correlações entre área foliar real (Af) e parâmetros dimensionais do limbo foliar, como o comprimento (C) ao longo da nervura principal e a largura máxima (L) perpendicular à nervura principal. Foram analisados 200 limbos foliares de cada espécie, coletados em diferentes agroecossistemas na Universidade Estadual Paulista, campus de Jaboticabal. Os modelos estatísticos utilizados foram linear: Y = a + bx; linear simples: Y = bx; geométrico: Y = ax b; e exponencial: Y = ab x. Todos os modelos analisados podem ser empregados para estimação da área foliar de S. cordifolia e S. rhombifolia. Sugere-se optar pela equação linear simples, envolvendo o produto C*L, considerando-se o coeficiente linear igual a zero, em função da praticidade desta. Desse modo, a estimativa da área foliar de S. cordifolia pode ser obtida pela fórmula Af = 0,7878*(C*L), com coeficiente de determinação de 0,9307, enquanto para S. rhombifolia a estimativa da área foliar pode ser obtida pela fórmula Af = 0,6423*(C*L), com coeficiente de determinação de 0,9711.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com o objetivo de obter uma equação que, através de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Typha latifolia, estudaram-se relações entre a área foliar real (Sf) e parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. As equações lineares simples, exponenciais e geométricas obtidas podem ser usadas para estimação da área foliar da taboa. do ponto de vista prático, sugere-se optar pela equação linear simples que envolve o produto C x L, usando-se a equação de regressão Sf = 0,9651 x (C x L), que equivale a tomar 96,51% do produto entre o comprimento ao longo da nervura principal e a largura máxima, com um coeficiente de determinação de 0,9411.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com o objetivo de obter uma equação que, através de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Tridax procumbens, estudaram-se relações entre a área foliar real (Sf) e os parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. As equações lineares simples, exponenciais e geométricas obtidas podem ser usadas para estimação da área foliar da erva-de-touro. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, usando-se a equação de regressão Sf = 0,6008 x (C x L), que equivale a tomar 60,08% do produto entre o comprimento ao longo da nervura principal e a largura máxima, com um coeficiente de determinação de 0,8731.