32 resultados para linear projector arrays
Resumo:
Objetivou-se com este trabalho, desenvolver modelos de programação não-linear para sistematização de terras, aplicáveis para áreas com formato regular e que minimizem a movimentação de terra, utilizando o software GAMS para o cálculo. Esses modelos foram comparados com o Método dos Quadrados Mínimos Generalizado, desenvolvido por Scaloppi & Willardson (1986), sendo o parâmetro de avaliação o volume de terra movimentado. Concluiu-se que, ambos os modelos de programação não-linear desenvolvidos nesta pesquisa mostraram-se adequados para aplicação em áreas regulares e forneceram menores valores de movimentação de terra quando comparados com o método dos quadrados mínimos.
Resumo:
A seleção de pulverizadores agrícolas que se adaptem às necessidades da propriedade, é um processo trabalhoso, sendo uma das etapas mais importantes dentro do processo produtivo. O objetivo do presente trabalho foi o de desenvolver e utilizar um modelo de programação linear para auxiliar na seleção de pulverizadores agrícolas de barras, baseado no menor custo horário do equipamento. Foram utilizadas as informações técnicas referentes a 20 modelos de pulverizadores disponíveis no mercado, sendo quatro autopropelidos, oito de arrasto e oito do tipo montado. A análise de sensibilidade dos componentes dos custos operacionais mostrou que as taxas de reparo e depreciação foram os fatores que mais interferiram na variação do custo horário do conjunto trator-pulverizador. O modelo matemático desenvolvido facilitou a realização da análise de sensibilidade que foi processada em um tempo muito pequeno.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Stochastic stability for Markovian jump linear systems associated with a finite number of jump times
Resumo:
This paper deals with a stochastic stability concept for discrete-time Markovian jump linear systems. The random jump parameter is associated to changes between the system operation modes due to failures or repairs, which can be well described by an underlying finite-state Markov chain. In the model studied, a fixed number of failures or repairs is allowed, after which, the system is brought to a halt for maintenance or for replacement. The usual concepts of stochastic stability are related to pure infinite horizon problems, and are not appropriate in this scenario. A new stability concept is introduced, named stochastic tau-stability that is tailored to the present setting. Necessary and sufficient conditions to ensure the stochastic tau-stability are provided, and the almost sure stability concept associated with this class of processes is also addressed. The paper also develops equivalences among second order concepts that parallels the results for infinite horizon problems. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, a factor referred to as k(f) for linear induction motor end effect analysis is presented. The mathematical model takes into account the longitudinal entry end effect. The entry end effect produces considerable distortion in magnetic field distribution. It is shown how this influence is derived from the machine-developed force that is calculated through the application of the I-D theory. The k(f) factor establishes the relationship between the longitudinal end effect and machine parameters, mainly the number of magnetic poles, secondary resistivity, and frequency.
Resumo:
The problem of a fermion subject to a general scalar potential in a two-dimensional world is mapped into a Sturm-Liouville problem for nonzero eigenenergies. The searching for possible bounded solutions is done in the circumstance of power-law potentials. The normalizable zero-eigenmode solutions are also searched. For the specific case of an inversely linear potential, which gives rise to an effective Kratzer potential, exact bounded solutions are found in closed form. The behaviour of the upper and lower components of the Dirac spinor is discussed in detail and some unusual results are revealed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The problem of a fermion subject to a general mixing of vector and scalar potentials in a two-dimensional world is mapped into a Sturm-Liouville problem. Isolated bounded solutions are also searched. For the specific case of an inversely linear potential, which gives rise to an effective Kratzer potential in the Sturm-Liouville problem, exact bounded solutions are found in closed form. The case of a pure scalar potential with their isolated zero-energy solutions, already analyzed in a previous work, is obtained as a particular case. The behavior of the upper and lower components of the Dirac spinor is discussed in detail and some unusual results are revealed. The nonrelativistic limit of our results adds a new support to the conclusion that even-parity solutions to the nonrelativistic one-dimensional hydrogen atom do not exist. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The problem of neutral fermions subject to an inversely linear potential is revisited. It is shown that an infinite set of bound-state solutions can be found on the condition that the fermion is embedded in an additional uniform background potential. An apparent paradox concerning the uncertainty principle is solved by introducing the concept of effective Compton wavelength.
Resumo:
The problem of a fermion subject to a a scalar inversely linear potential in a two-dimensional world is mapped into a Sturm-Liouville problem for nonzero eigenenergies. This mapping gives rise to an effective Kratzer potential and exact bounded solutions are found in closed form. The normalizable zero-eigenmode solution is also found. A few unusual results are revealed.
Resumo:
The problem of a spinless particle subject to a general mixing of vector and scalar inversely linear potentials in a two-dimensional world is analyzed. Exact bounded solutions are found in closed form by imposing boundary conditions on the eigenfunctions which ensure that the effective Hamiltonian is Hermitian for all the points of the space. The nonrelativistic limit of our results adds a new support to the conclusion that even-parity solutions to the nonrelativistic one-dimensional hydrogen atom do not exist. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The problem of confinement of fermions in 1 + 1 dimensions is approached with a linear potential in the Dirac equation by considering a mixing of Lorentz vector and scalar couplings. Analytical bound-states solutions are obtained when the scalar coupling is of sufficient intensity compared to the vector coupling. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The Duffin-Kemmer-Petiau (DKP) equation, in the scalar sector of the theory and with a linear nominimal vector potential, is mapped into the nonrelativistic harmonic oscillator problem. The behavior of the solutions for this sort of vector DKP oscillator is discussed in detail.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)