33 resultados para laser ablation
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Ideally projected to be applied on soft tissues, infrared lasers were improved by restorative dentistry to be used in hard dental tissues cavity preparations-namely enamel and dentin. This paper evidentiates the relevant aspects of infrared Erbium laser's action mechanism and its effects, and characterizes the different effects deriving from the laser's beams emission. The criteria for use and selection of optimal parameters for the correct application of laser systems and infuence of supporting factors on the process, such as water amount and its presence in the ablation process, protection exerted by the plasma shielding and structural factors, which are indispensable in dental tissues cavity preparation related to restorative technique, are subordinated to optical modifcations caused by the interaction of the energy dissipated by these laser light emission systems in the targeted tissue substrate. Clinical relevance: Differences in the action of infrared Erbium laser system in regard to the nature of the ablation process and variations on the morphological aspects observed in the super-fcial structure of the target tissue irradiated, may be correlated to the structural optical modifcations of the substrate produced by an interaction of the energy propagated by laser systems.
Resumo:
Objective: The use of Er:YAG laser operating in the 3 μm range with adjustable power and pulses has become popular for dental and medical practice due to its high photoablative capacity, surgical precision and antimicrobial action. Background data: The existing fiberoptic tips irradiate lasers parallel to the long axes of the tooth limiting its efficiency in the root canal. Methods: We evaluated hollow fiberoptic tips obtained from silicate glass as a means of Er:YAG laser conduction in dental procedures. The fiber tips were molded from capillary tubes with different profiles so that their ends would have cylindric, conical or spherical shapes. The performance of the three fibers as a means of propagation of Er:YAG (λ = 2.94 μm) laser radiation was compared to that of a solid sapphire fiber at 10 Hz and 200 mJ and of 20 Hz and 500 mJ. The profiles of frontal and lateral burning were visualized on thermal paper. Results: Analysis of these profiles demonstrated that the sapphire tip and the hollow fiber of cylindric section did not differ significantly in the profiles of frontal burning, and no lateral burning was detected. The fibers of the conical and spherical sections, although presenting attenuation in the frontal output power, showed a larger burning area in the frontal profile, in addition to producing lateral burning. Conclusions: The results indicate that commercial hollow fiberoptics have advantages such as easy manufacture of the different tip shapes, great adaptability, low cost, and a low loss of transmission. © Mary Ann Liebert, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Although several studies of Araxá Group in the region of Passos, just a few works deal with the age of metamorphism of this group. The current work aims to determine the cooling age of these rocks by in situ U-Pb dating in rutiles. Interestingly, the region of São Sebastião do Paraíso shows a condensed lithostratigraphic column from the Passos Nappe and exposes the higher metamorphic grade rocks described for this unit. The use of rutile as a geochronometer is based on its ability to incorporate U in its structure, facilitating the calculation of the age of the isotope ratio by U-Pb. Furthermore, the use of in situ dating technique with Laser Ablation has been a reliable and advantageous study because the analysis are punctual, and do not destroy the whole sample to be analyzed. The analyses of this work were made at the University of Gothenburg - Sweden and obtained 238U/206Pb ages between 608-566 ± 10 Ma and 235U/207Pb between 627-572 ± 10 Ma, showing that these ages are concordant with the literature in the area and are interpreted as the cooling age of metamorphism
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of the present study was to evaluate, using a biomechanical test, the force needed to remove implants with surface modification by laser (Nd:YAG) in comparison with implants with machined surfaces. Twenty-four rabbits received one implant with each surface treatment in the tibia, machined surface (MS) and laser-modified surface (LMS). After 4, 8 and 12 weeks of healing, the removal torque was measured by a torque gauge. The surfaces studied were analyzed according to their topography, chemical composition and roughness. The average removal torque in each period was 23.28, 24.0 and 33.85 Ncm for MS, and 33.0, 39.87 and 54.57 Ncm for LMS, respectively. The difference between the surfaces in all periods of evaluation was statistically significant (p < 0.05). Surface characterization showed that a deep and regular topography was provided by the laser conditioning, with a great quantity of oxygen ions when compared to the MS. The surface micro-topography analysis showed a statistical difference (p < 0.01) between the roughness of the LMS (R a = 1.38 ± 0.23 μm) when compared to that of the MS (R a = 0.33 ± 0.06 μm). Based on these results, it was possible to conclude that the LMS implants' physical-chemical properties increased bone-implant interaction when compared to the MS implants. © 2009 Sociedade Brasileira de Pesquisa Odontológica.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: A morphological and ultra-structural study of copper vapor laser (λ = 510.6 nm) effects on enamel and dentine was performed to show the effects of this radiation. Methods: A total of 15 human molars were cut in half; 15 pieces were separated for irradiation on enamel and 15 for dentine. These two groups were further divided into five experimental groups, including a control group, comprised of three half-sections each, irradiated by a CVL laser with a power of 7 W, a repetition rate of 15,000 pulses/sec and exposed at 500, 600, and 800 msec and 1 sec irradiation times with a 5-sec interval between irradiations. Results: In an ultra-structural SEM exam, we observed that on the enamel surfaces irradiated for 1 sec there was morphological alteration that consisted of catering, flaking, and melting on the surfaces. There was no alteration for the other exposure times. On the dentine teeth irradiated for 1 sec, we observed an evident ultra-structural alteration of melted tissue and loss of morphological characteristics. In the dentine group irradiated by 800 msec, we observed ablation and a partial loss of morphological characteristics. In the dentine groups irradiated by 500 and 600 msec, no alteration was observed. Conclusions: The results showed that irradiation with CVL promoted morphologic changes in the enamel as well as in the dentine and demonstrated a need for future studies in order to establish a safe protocol for further use in the odontological practice.