75 resultados para irrigation management
Resumo:
The water restriction can damage the performance of crops, especially in the flowering period. Thus, the aim of this research was to evaluate the response of genotypes of wheat submitted to water deficit in the beginning of flowering. The experiment was conducted in greenhouse, in a completely randomized design, in factorial scheme 3 x 2, with five replications. The factors studied were: three wheat cultivars (Coodetec (CD) 105, 108 and 111) and 2 irrigation managements (with and without imposition of water deficit). During the period of water deficit imposition, gravimetric soil moisture and the relative content of water in leaf were evaluated, while at the moment of rehydration the biometric variables were determined. At the end of the crop cycle the components of production were evaluated. Reduction was found in the gravimetric soil moisture, in the relative levels of water and in all biometric variables, in function of the water deficit. The grain production showed difference only among the water regimes, in which the cultivar CD 111 is more efficient in the maintenance of the productive potential in conditions of water deficit, through the quick recovery in the relative content of water in leaves.
Resumo:
With technological innovations, such as irrigation, the bean has been grown by producers who have the most varied levels of technology that, in suitable times, allows the planting great success in grain yield. The aim of this study was to evaluate the response of the dry bean to different managements of irrigation and nitrogen fertilization with no-tillage system, in Aquidauana - MS, Brazil. The experiment was conducted at the Universidade Estadual de Mato Grosso do Sul (UEMS), with the soil of the area classified as Alfisol, using the bean crop "Perola" sown on June 30, 2007. The experimental design was a randomized block split-plot consisting of three blocks and two replications within each block. The plots were composed of three management of irrigation, by the Class A pan method, using Hargreaves-Samani equation, and management by tensiometry (-40 kPa), with water replacement of 16.5 mm for all irrigation plots. The subplots consisted on four rates of nitrogen fertilization (0; 50; 100 and 150 kg ha(-1)), in which the nitrogen source was urea. It was concluded that the irrigation management through the Class A pan and Hargreaves-Samani equation conduced to higher grain yields of bean, 3031.11 and 3005.02 kg ha(-1) respectively.
Resumo:
This study aimed to verify the effects of four different minimum soil watler potentials (-30, -40, -50 e -70 kPa) and two different plastic tunnel positions (North-South and East-West) on net melon yield. The results showed that in the East-West position the yield and fruit weight were higher than in the North-South position. The highest yields of melon crop were obtained from -30 kPa. to -40 kPa minimum soil water potential.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O manejo de irrigação pode influenciar o comportamento ecofisiológico e a produção da videira. O objetivo desse trabalho, conduzido em 2010 em Petrolina – PE, no Submédio do Vale do São Francisco, foi avaliar a influência de diferentes estratégias de manejo de irrigação no potencial de água na folha e em aspectos qualitativos e quantitativos das uvas do primeiro ciclo de produção da videira cv. Syrah/Paulsen 1103. O sistema de irrigação utilizado foi gotejamento e a lâmina de água foi estimada com base na evapotranspiração da cultura. O delineamento experimental utilizado foi o de blocos casualizados, em 4 repetições e com 3 tratamentos: irrigação plena, realizada durante todo o ciclo de produção; a irrigação com déficit, onde a aplicação de água foi interrompida na fase fenológica de cacho fechado; e a irrigação com déficit controlado, onde a irrigação, também interrompida na fase de cacho fechado, foi eventualmente realizada após a interrupção, de acordo com o monitoramento da água no solo. A imposição de déficit hídrico às plantas favoreceu uma maior concentração de açúcares e a redução da acidez nos frutos, contribuindo para a melhoria da qualidade das uvas para vinificação.
Resumo:
The Irrigameter is aevapotranspiration measuring device used in irrigation management to optimize water. However, its use requires a prior adjustment to weather conditions where it will be used. The objective of this study was identify the corresponding height of water level inside the evaporimeterIrrigameter that estimate reference evapotranspiration in climate of the plateau of Vitoria da Conquista - BA, in different seasons. The experiment was a completely randomized design with five treatments and three replications. For each treatment was determined an average coefficient for the Irrigameter called K I, calculated as the ratio of estimated evapotranspiration in Irrigameter (ET I) and reference evapotranspiration (ET 0). The ET 0 was obtained by the Penman-Monteith - FAO 56. The results showed that the coefficients of Irrigameter increased exponentially with increasing water level inside the evaporimeter, and the equipment must be operated with the water level equal to 5.2 cm for better estimation of ET 0. The remaining heights observed in different seasons showed no significant difference when compared to annual average used as a reference in this study.
Resumo:
The municipality of Petrolina, located in the semi-arid region of Brazil, is highlighted as an important agricultural growing region, however the irrigated areas have cleared natural vegetation inducing a loss of biodiversity. To analyze the contrast between these two ecosystems the large scale values of biomass production (BIO), evapotranspiration (ET) and water productivity (WP) were quantified. Monteithś equation was applied for estimating the absorbed photosynthetically active radiation (APAR), while the new SAFER (Simple Algorithm For Evapotranspiration Retrieving) algorithm was used to retrieve ET. The water productivity (WP) was analysed by the ratio of BIO by ET at monthly time scale with four bands of MODIS satellite images together with agrometeorological data for the year of 2011. The period with the highest water productivity values were from March to April in the rainy period for both irrigated and not irrigated conditions. However the largest ET rates were in November for irrigated crops and April for natural vegetation. More uniformity of the vegetation and water variables occurs in natural vegetation, evidenced by the lower values of standard deviation when comparing to irrigated crops, due to the different crop stages, cultural and irrigation managements. The models applied with MODIS satellite images on a large scale are considered to be suitable for water productivity assessments and for quantifying the effects of increasing irrigated areas over natural vegetation on regional water consumption in situations of quick changing land use pattern. © 2012 SPIE.
Resumo:
The objective of this study was to evaluate the performance of pineapple cultivar Smooth Cayenne as the physical production and the quality of the fruit when subjected to different frequencies of water dpeth and soil water in Triângulo Mineiro - Uberaba-MG. The experimental area soil is Oxisol, clay loam sandy and soft undulating local relief. A randomized block design in a factorial 4 x 2 with four levels of soil water depth (50%, 75%, 100% and 125%) of crop evapotranspiration (ETc) and two irrigation frequencies (1 day and 3 days = F1 = F2) and four replications was utilized. The crop productivity, number of seedlings, mean weight, diameter, and hardness of the fruit, plus water use efficiency were evaluated. Productivity was not significantly affected by the water depth and by the frequency of water applied; however the fruit shell resistance, the efficiency of water use, and ratoon seedlings were significantly influenced by irrigation, the water depth of 50% of the crop evapotranspiration (ETC) provided greater efficiency of water use for the production of pineapple fruit.
Resumo:
Strawberry yield and quality was evaluated after drastic pruning (second cycle), under different soil water tensions, drip irrigation. The experiment was conducted on beds at a greenhouse, located at Engineering Department, Federal University of Lavras (UFLA), from April to December of 2010. An experimental design was in randomized blocks with three replicates. The treatments were composed of six different soil water tension, 15, 25, 35, 45, 55 e 70 kPa. Results obtained allowed to verify that to higher values of: total and commercial fresh weight of fruits per plant, total and commercial number fruits per plant and total and commercial yield, it is necessary to irrigate when soil water tension gets approximately to 15 kPa, at 0.15 m deep. Commercial average fruit mass and noncommercial fresh weight of fruits per plant, were not reduced under different soil water tensions applied.
Resumo:
The aim of this study was to evaluate the total number of clusters per plant and the sugar concentration of Superior Seedless grapevine branches under different soil water tensions conditions. The statistical design was a randomized block with 4 treatments (a) control, b) 70 kPa tension, c) 50 kPa tension, d) 30 kPa tension, and 6 replications, each plot consisting of two plants. Soil moisture curves were plotted in laboratory and field conditions, potential bud fertility (carried out with the help of a 30x magnifier glass and collecting 17 branches in the primary arm of the plant with 15 buds each), actual fertility (given by the fertile buds to sprouted buds per plant ratio) and total sugars. Laboratory conditions helped stress to reach a -70 kPa level in just 21 days during the procedure to determine the retention curve in the laboratory. The different stress levels applied to the soil did not cause significant differences in the total number of clusters per plant. However, a -30 kPa stress showed a 68% reduction in water depth when compared to control and different soil water stress affected the carbohydrate percentage in branches of the Superior Seedless vine.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA