27 resultados para hydrolyzate
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
This study aimed to evaluate the use of sweet potato as a substrate for the production of spirits. In order to promote an alternative technologically feasible, an experimental design was performed to minimize the operations of preparation, defining the most adequate conditions for the fermentation process. From sweet potato flour obtained by milling and dehydration process of the roots was carried out an enzymatic process of hydrolysis-saccharification of suspension of sweet potato flour with 18% dry matter. The hydrolyzate was used in the fermentation process which followed the 23 full factorial experimental design with central and axial points, and the independent variables were the concentration of reducing sugars, concentration of viable yeast and fermentation temperature. The dependent variables were viable cells, residual sugar, ethanol, glycerol and methanol. The dependent variables were quantified by liquid chromatography. The data analysis indicate that the best fermentation conditions among the tested conditions were: concentration of yeast 5 x 107-1 x 108 in number of viable cells, total reducing sugars from 12.5 to 13.5% and temperature between 33 -34ºC.
Resumo:
Aiming to get the best economic advantage in ethanol production from cassava roots, this study presented a physiochemical characterization from two different types of solid waste in two types of processing of the raw materials in manufacturing ethanol. The processing of cassava roots begins with the disintegration and washing the roots with the addition of 20% more water to obtain a pulp which was treated and stirred in the reactor while adding enzyme α-amylase at a temperature of 90°C for 2 hours. Then we performed a pH adjustment while lowering the temperature to 60 ° C with the addition of the enzyme amiloglucosidase and then stirring for 14 hours. The hydrolyzate obtained was the source of two types of waste which are: i) Solid residue obtained after filtration of the hydrolyatze and ii) Solid waste obtained from filtering wine after alcoholic fermentation of the hydrolyzate with the addition of a dried yeast strain Y-940 manufactured by MAURI OF BRAZIL SA (2%) at a temperature of 25º C. The results of the laboratory analysis showed that the byproducts derived from the hydrolysis and fermentation showed very similar chemical compositions. With levels between 39 and 41% fiber, 0.5% lipids, 20 and 30% carbohydrates, protein 0.5 and 1.50, 6 and 8% acidity, and 20 and 30% soluble solids.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The production of ethanol and sugar from sugarcane juice generate as byproduct, the bagasse. Currently, the bagasse, an industrial lignocellulosic biomass, can be used for production of second-generation ethanol, since when it is submitted to hydrolytic processes generates fermentable sugars. The objective of this study was to produce fungal enzymes capable of hydrolyzing this lignocellulosic biomass to generate glucose. For this, we used the mushroom species Lentinula edodes, Pleurotus ostreatus, Pleurotus eryngii, and Pycnoporus sanguineus as potential sources of laccase, manganese peroxidase and lignin peroxidase enzymes, capable of hydrolyzing the crushed sugarcane. The hydrolysis process was performed with the highest enzymatic activities observed from laccase in L. edodes (39.23 U-mL after 25 day incubation), P. ostreatus (2.5 U U-mL after 27 day incubation), P. sanguineus (80 U-mL after 27 days of incubation) and P. eryngii (16.45 U-mL 15 days incubation). MnP and LiP showed no significant results. The enzymatic hydrolysis of sugarcane bagasse in natura (32,17% hemicellulose, cellulose 52,45% and 10,62% lignin) and bagasse hydrolyzate with 7,0% H2SO4 (0,20% hemicellulose, 68,82% to 25,33% cellulose and lignin) were evaluated for each enzymatic obtained. Compared to others, the enzymes produced by P. sanguineus incubated in sugarcane bagasse showed better efficiency resulting in glucose with an average content of 0,14 g-L. Although the levels of glucose determined in this work were low in relation to the literature, it can be stated that the laccase, manganese peroxidase and lignin peroxidase enzymes demonstrated good hydrolytic potential, especially those produced by the fungus P. sanguineus.
Resumo:
Ginger is a starchy tubers prized for their chemical components. In the production of any kinds of beverages has been added to the extract of ginger. However, in view of the high starch content, a possibility of further development of the agribusiness sector this would be the hydrolysis tuberous rhizomes disqualified for export in order to obtain hydrolysates that would be used in the preparation of fermented beverages. This work aimed to evaluate the production of sugar from rhizomes of ginger. Two α-amylase enzymes were tested in the stage of liquefaction (Liquozyme Supra (T1) and Termamyl 2X (T2)), as well as the effect of time of action of amyloglucosidase (AMG 300L). The hydrolysates were analyzed in liquid chromatography (HPLC) and was also carried out the mass balance of the processes. The results showed higher hydrolysis of starch in the treatment that used Liquozyme Supra in liquefaction. The action time of 18 hours of AMG 300L hydrolyzate which gave an 98% of its chemical components was glucose.
Resumo:
Pós-graduação em Microbiologia - IBILCE
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)