149 resultados para human skeletal muscle
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Ischaemia and reperfusion effects on skeletal muscle tissue: morphological and histochemical studies
Resumo:
This was a study on the oxidative stress due to ischaemia (I) and reperfusion (R) in skeletal muscle tissue. Using a tourniquet, groups of rats were submitted to ischaemia for 4 h, followed by different reperfusion periods. The animals were divided in four groups: control; 4 h of ischaemia (IR); 4 h of ischaemia plus 1 h reperfusion (IR-1 h); 4 h of ischaemia plus 24 h reperfusion (IR-24 h); and 4 h of ischaemia plus 72 h reperfusion (IR-72 h). At the end of the procedures, samples of soleus muscle were collected and frozen in n-hexane at -70 degrees C. Cryostat sections were submitted to haematoxylin-eosin, succinate dehydrogenase (SDH) and nicotinamide adenine dinucleotide-tetrazolium reductase (NADH-TR) stains. An additional muscle sample was processed for electron microscopy. No alterations were found in control animals. IR group showed fibres had normal aspect besides some round, acidophilic and hypertrophic fibres. There were several fibres with angular outlines and smaller diameters in this group compared with control group. NADH-TR/SDH reaction was moderately intense in most fibres. In some fibres, cytoplasm showed areas without activity and other fibres had very intense reactivity. IR-1 h group showed oedema hypercontracted fibres with disorganized myofibrils, mitochondria with focal lesions and dilated sarcoplasmic reticulum. NADH-TR/SDH reaction was moderate to weak. IR-24 h showed intense inflammatory infiltrate in the endomysium and perimysium. NADH-TR/SDH reaction was similar to IR-1 h. IR-72 h showed necrotic fibres, areas with inflammatory infiltrate, reduced muscle fibres at different stages of necrosis and phagocytosis, and many small round and basophilic fibres characterizing a regeneration process. NADH-TR/SDH reaction was weak to negative. Our results suggest that ischaemia and the subsequent 1-, 24- and 72-h reperfusions induced progressive histological damage. Although progressive, it may be reversible because there were ultrastructural signs of recovery after 72-h reperfusion. This recovery could in part be due to the low oxidative stress identified by the morphological and histochemical analysis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In a previous study, we showed that the Polybia paulista wasp venom causes strong myonecrosis. This study was undertaken to characterize the myotoxic potency of mastoparan (Polybia-MPII) isolated from venom (0.25 mu g/mu l) and injected in the tibial anterior (TA) muscle (i.m.) of Balb/c mice. The time course of the changes was followed at muscle degenerative (3 and 24 h) and regenerative (3, 7, and 21 days) periods (n = 6) after injection and compared to matched controls by calculation of the percentage of cross-sectional area affected and determination of creatine kinase (CK) activity (n = 10). The results showed that although NIP was strongly myotoxic, its capacity for regeneration was maintained high. Since the extent of tissue damage was not correlated with the CK serum levels, which remained very low, we raised the hypothesis that the enzyme underwent denaturation by the peptide. Evidence suggested that MP induced the death of TA fibers by necrosis and apoptosis and had the sarcolemma as its primordial target. Given its amphiphilic polycationic nature and based on the vast spectrum of functions attributed to the peptide, we suggest that MP interaction with cell membrane impaired the phosphorylation of dystrophin essential for sarcolemma mechanical stability, and disturbed Ca2+ mobilization with obvious implications on sarcoplasmic reticulum and mitochondrial functioning. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Animal venoms have been valuable sources for development of new drugs and important tools to understand cellular functioning in health and disease. The venom of Polybia paulista, a neotropical social wasp belonging to the subfamily Polistinae, has been sampled by headspace solid phase microextraction and analyzed by gas chromatography-mass spectrometry. Recent study has shown that mastoparan, a major basic peptide isolated from the venom, reproduces the myotoxic effect of the whole venom. In this study, Polybia-MPII mastoparan was synthesized and studies using transmission electron microscopy were carried out in mice tibial anterior muscle to identify the subcellular targets of its myotoxic action. The effects were followed at 3 and 24 h, 3, 7, and 21 days after mastoparan (0.25 mu g/mu L) intramuscular injection. The peptide caused disruption of the sarcolemma and collapse of myofibril arrangement in myofibers. As a consequence, fibers presented heteromorphic amorphous masses of agglutinated myofilaments very often intermingled with denuded sarcoplasmic areas sometimes only surrounded by a persistent basal lamina. To a lesser extent, a number of fibers apparently did not present sarcolemma rupture but instead appeared with multiple small vacuoles. The results showed that sarcolemma, sarcoplasmic reticulum (SR), and mitochondria were the main targets for mastoparan. In addition, a number of fibers showed apoptotic-like nuclei suggesting that the peptide causes death both by necrosis and apoptosis. This study presents a hitherto unexplored view of the effects of mastoparan in skeletal muscle and contributes to discuss how the known pharmacology of the peptide is reflected in the sarcolemma, SR, mitochondria, and nucleus of muscle fibers, apparently its subcellular targets.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
1. The role of beta(2)-agonist and of cAMP in chick skeletal muscle proteolytic pathways and protein synthesis was investigated using an in vitro preparation that maintains tissue glycogen stores and metabolic activity for several hours.2. In extensor digitorum longus (EDL) muscle total proteolysis decreased by 15 to 20% in the presence of equimolar concentrations of epinephrine, clenbuterol, a selective beta(2)-agonist, or dibutyryl-cAMP. Rates of protein synthesis were not altered by clenbuterol or dibutyryl-cAMP.3. The decrease in the rate of total protein degradation induced by 10(-5) M clenbuterol was paralleled by a 44% reduction in Ca2+-dependent proteolysis, which was prevented by 10(-5) M ICI 118.551, a selective beta(2)-antagonist.4. No change was observed in the activity of the lysosomal, ATP-dependent, and ATP-independent proteolytic systems. Ca2+-dependent proteolytic activity was also reduced by 58% in the presence of 10(-4) M dibutyryl-cAMP or isobutylmethylxanthine.5. The data suggest that catecholamines exert an inhibitory control of Ca2+-dependent proteolysis in chick skeletal muscle, probably mediated by beta(2)-adrenoceptors, with the participation of a cAMP-dependent pathway.
Resumo:
Mutants of each of the four divalent cation binding sites of chicken skeletal muscle troponin C (TnC) were constructed using site directed mutagenesis to convert Asp to Ala at the first coordinating position in each site. With a view to evaluating the importance of site-site interactions both within and between the N- and C-terminal domains, in this study the mutants are examined for their ability to associate with other components of the troponin-tropomyosin regulatory complex and to regulate thin filaments. The functional effects of each mutation in reconstitution assays are largely confined to the domain in which it occurs, where the unmutated site is unable to compensate for the defect, Thus the mutants of sites I and II bind to the regulatory complex but are impaired in ability to regulate tension and actomyosin ATPase activity, whereas the mutants of sites III and IV regulate activity but are unable to remain bound to thin filaments unless Ca2+ is present. When all four sites are intact, free Mg2+ causes a 50-60-fold increase in TnC's affinity for the other components of the regulatory complex, allowing it to attach firmly to thin filaments. Calcium can replace Mg2+ at a concentration ratio of 1:5000, and at this ratio the Ca2 . TnC complex is more tightly bound to the filaments than the Mg2 . TnC form, In the C-terminal mutants, higher concentrations of Ca2+ (above tension threshold) are required to effect this transformation than in the recombinant wild-type protein, suggesting that the mutants reveal an attachment mediated by Ca2+ in the N-domain sites.