98 resultados para geometric singular perturbation theory
Resumo:
This article extends results contained in Buzzi et al. (2006) [4], Llibre et al. (2007, 2008) [12,13] concerning the dynamics of non-smooth systems. In those papers a piecewise C-k discontinuous vector field Z on R-n is considered when the discontinuities are concentrated on a codimension one submanifold. In this paper our aim is to study the dynamics of a discontinuous system when its discontinuity set belongs to a general class of algebraic sets. In order to do this we first consider F :U -> R a polynomial function defined on the open subset U subset of R-n. The set F-1 (0) divides U into subdomains U-1, U-2,...,U-k, with border F-1(0). These subdomains provide a Whitney stratification on U. We consider Z(i) :U-i -> R-n smooth vector fields and we get Z = (Z(1),...., Z(k)) a discontinuous vector field with discontinuities in F-1(0). Our approach combines several techniques such as epsilon-regularization process, blowing-up method and singular perturbation theory. Recall that an approximation of a discontinuous vector field Z by a one parameter family of continuous vector fields is called an epsilon-regularization of Z (see Sotomayor and Teixeira, 1996 [18]; Llibre and Teixeira, 1997 [15]). Systems as discussed in this paper turn out to be relevant for problems in control theory (Minorsky, 1969 [16]), in systems with hysteresis (Seidman, 2006 [17]) and in mechanical systems with impacts (di Bernardo et al., 2008 [5]). (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The one-dimensional Schrödinger equation with the singular harmonic oscillator is investigated. The Hermiticity of the operators related to observable physical quantities is used as a criterion to show that the attractive or repulsive singular oscillator exhibits an infinite number of acceptable solutions provided the parameter responsible for the singularity is greater than a certain critical value, in disagreement with the literature. The problem for the whole line exhibits a two-fold degeneracy in the case of the singular oscillator, and the intrusion of additional solutions in the case of a nonsingular oscillator. Additionally, it is shown that the solution of the singular oscillator can not be obtained from the nonsingular oscillator via perturbation theory.
Resumo:
Dirac's hole theory and quantum field theory are usually considered equivalent to each other. The equivalence, however, does not necessarily hold, as we discuss in terms of models of a certain type. We further suggest that the equivalence may fail in more general models. This problem is closely related to the validity of the Pauli principle in intermediate states of perturbation theory.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
By using the reductive perturbation method of Taniuti with the introduction of an infinite sequence of slow time variables tau(1), tau(3), tau(5), ..., we study the propagation of long surface-waves in a shallow inviscid fluid. The Korteweg-de Vries (KdV) equation appears as the lowest order amplitude equation in slow variables. In this context, we show that, if the lowest order wave amplitude zeta(0) satisfies the KdV equation in the time tau(3), it must satisfy the (2n+1)th order equation of the KdV hierarchy in the time tau(2n+1), With n = 2, 3, 4,.... AS a consequence of this fact, we show with an explicit example that the secularities of the evolution equations for the higher-order terms (zeta(1), zeta(2),...) of the amplitude can be eliminated when zeta(0) is a solitonic solution to the KdV equation. By reversing this argument, we can say that the requirement of a secular-free perturbation theory implies that the amplitude zeta(0) satisfies the (2n+1)th order equation of the KdV hierarchy in the time tau(2n+1) This essentially means that the equations of the KdV hierarchy do play a role in perturbation theory. Thereafter, by considering a solitary-wave solution, we show, again with an explicit, example that the elimination of secularities through the use of the higher order KdV hierarchy equations corresponds, in the laboratory coordinates, to a renormalization of the solitary-wave velocity. Then, we conclude that this procedure of eliminating secularities is closely related to the renormalization technique developed by Kodama and Taniuti.
Resumo:
In this paper we deal with discontinuous vector fields on R-2 and we prove that the analysis of their local behavior around a typical singularity can be treated via singular perturbation. The regularization process developed by Sotomayor and Teixeira is crucial for the development of this work. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with a class of singularly perturbed reversible planar vector fields around the origin where the normal hyperbolicity assumption is not assumed. We exhibit conditions for the existence of infinitely many periodic orbits and hetero-clinic cycles converging to singular orbits with respect to the Hausdorf distance. In addition, generic normal forms of such singularities are presented.
Resumo:
By considering the long-wavelength limit of the regularized long wave (RLW) equation, we study its multiple-time higher-order evolution equations. As a first result, the equations of the Korteweg-de Vries hierarchy are shown to play a crucial role in providing a secularity-free perturbation theory in the specific case of a solitary-wave solution. Then, as a consequence, we show that the related perturbative series can be summed and gives exactly the solitary-wave solution of the RLW equation. Finally, some comments and considerations are made on the N-soliton solution, as well as on the limitations of applicability of the multiple-scale method in obtaining uniform perturbative series.
Resumo:
Monte Carlo simulations of water-dimethylformamide (DMF) mixtures were performed in the isothermal and isobaric ensemble at 298.15 K and 1 atm. The intermolecular interaction energy was calculated using the classical 6-12 Lennard-Jones pairwise potential plus a Coulomb term. The TIP4P model was used for simulating water molecules, and a six-site model previously optimised by us was used to represent DMF. The potential energy for the water-DMF interaction was obtained via standard geometric combining rules using the original potential parameters for the pure liquids. The radial distribution functions calculated for water-DMF mixtures show well characterised hydrogen bonds between the oxygen site of DMF and hydrogen of water. A structureless correlation curve was observed for the interaction between the hydrogen site of the carbonyl group and the oxygen site of water. Hydration effects on the stabilisation of the DMF molecule in aqueous solution have been investigated using statistical perturbation theory. The results show that energetic changes involved in the hydration process are not strong enough to stabilise another configuration of DMF than the planar one.
Resumo:
We consider the (2 + 1)-dimensional massive Thirring model as a gauge theory, with one-fermion flavor, in the framework of the causal perturbation theory and address the problem of dynamical mass generation for the gauge boson. In this context we obtain an unambiguous expression for the coefficient of the induced Chern-Simons term.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The behavior of the non-perturbative parts of the isovector-vector and isovector and isosinglet axial-vector correlators at Euclidean momenta is studied in the framework of a covariant chiral quark model with non-local quark-quark interactions. The gauge covariance is ensured with the help of the P-exponents, with the corresponding modification of the quark-current interaction vertices taken into account. The low- and high-momentum behavior of the correlators is compared with the chiral perturbation theory and with the QCD operator product expansion, respectively. The V-A combination of the correlators obtained in the model reproduces quantitatively the ALEPH and OPAL data on hadronic tau decays, transformed into the Euclidean domain via dispersion relations. The predictions for the electromagnetic pi(+/-) - pi(0) mass difference and for the pion electric polarizability are also in agreement with the experimental values. The topological susceptibility of the vacuum is evaluated as a function of the momentum, and its first moment is predicted to be chi'(0) approximate to (50 MeV)(2). In addition, the fulfillment of the Crewther theorem is demonstrated.
Resumo:
We consider pion interactions in an effective field theory of the narrow resonance X(3872), assuming it is a weakly bound molecule of the charm mesons D-0(D) over bar (*0) and D-*0(D) over bar (0). Since the hyperfine splitting of the D-0 and D-*0 is only 7 MeV greater than the neutral pion mass, pions can be produced near threshold and are nonrelativistic. We show that pion exchange can be treated in perturbation theory and calculate the next-to-leading-order correction to the partial decay width Gamma[X -> D-0(D) over bar (0)pi(0)].
Resumo:
It is proven that the pure spinor superstring in an AdS(5) x S-5 background remains conformally invariant at one loop level in the sigma model perturbation theory.