57 resultados para fungus growth
Resumo:
The microorganism Sclerotinia was isolated from roots of Stevia rebaudiana (Bert.) Bertoni in plantations in the northwest of Parana and submitted to the cultivation in the presence of extracts and vegetable balsams of Tarragon (Artemisia draconculus), Thyme (Thymus vulgaris), Manjerona (Origanum majorona), Mint citrata (Mintpiperita var. citrata), Purple Basil (Ocimum basilicum L.), Andiroba (Carapa guanensis) and Copaíba (Copaifera reticulata Ducke). The first five oils were extracted by steam drags, after the drying of the vegetable in greenhouse with circulation of air at 45°C. The last two were used in natura. A suspension (100ìl) of fungus previously cultivated, was added to each plate. The results show that after 7 days of incubation the thyme oils 10ìl, purple basil 25ìl, manjerona 25ìl, mint citrata 50ìl, tarragon 50ìl were capable to inhibit the growth of Sclerotinia, while the andiroba oil only reached this result with 200ìl. The copaiba balsam, even in the concentration of 500ìl, was unable to inhibit the growth of the microorganism.
Resumo:
The mechanisms used by Paracoccidioides brasiliensis to survive into phagocytic cells are not clear. Cellular iron metabolism is of critical importance to the growth of several intracellular pathogens whose capacity to multiply in mononuclear phagocytes is dependent on the availability of intracellular iron. Thus, the objective of this paper was to investigate the role of intracellular iron in regulating the capacity of P. brasiliensis yeast cells to survive within human monocytes. Treatment of monocytes with deferoxamine, an iron chelator, suppressed the survival of yeasts in a concentration-dependent manner. The effect of deferoxamine was reversed by iron-saturated transferrin (holotransferrin) but not by nonsaturated transferrin (apotransferrin). These results strongly suggest that P. brasiliensis survival in human monocytes is iron dependent.
Fatty acid production by four strains of Mucor hiemalis grown in plant oil and soluble carbohydrates
Resumo:
Four Mucor hiemalis strains (M1, M2, M3 and M4), isolated from soil at a depth of 0 - 15 cm in the Juréia-Itatins Ecology Station (JIES), in the state of São Paulo, Brazil and were evaluated for the production of γ-linolenic (GLA) and other unsaturated fatty acids. Five growth variables (temperature, pH, carbon source, nitrogen source, and vegetable oils) were studied. Liquid media containing 2% vegetable oil (palm oil, canola oil, soybean oil, sesame oil, or sunflower oil) or 2% carbohydrate (fructose, galactose, glycerol, glucose, lactose, maltose, sucrose, sorbitol or xylose) and 1% yeast extract as a nitrogen source were used. The greatest biomass production was observed with M3 and M4 strains in palm oil (91.5 g l -1) and sunflower oil (68.3 g l -1) media, respectively. Strain M4 produced greater quantities of polyunsaturated acids in medium containing glucose. The GLA production in the M4 biomass was 1,132.2 mg l -1 in glucose medium. Plant oils were inhibitors of fatty acid production by these strains. © 2007 Academic Journals.
Resumo:
A Streptomyces was isolated from poultry plant wastewater, showed high keratinolytic activity when cultured on feather meal medium. Optimum keratinolytic activity was observed at 40°C and pH 8.0. The enzyme also showed to be stable between 40 and 60°C. The keratinolytic activity was not inhibited by EDTA, DMSO and Tween 80. On the other hand, CaCl2, ZnCl2, and BaCl2 slightly inhibited the keratinolytic activity. The Streptomyces isolated might be useful in leather, keratin waste treatment, animal feeding industry, and also cosmetic industry. © 2008 Academic Journals.
Resumo:
P. brasiliensis parasitizes various human tissues and proteinases exported by this fungus may allow it to metabolize and invade host tissues. The influence of the culture medium on the production of proteinases by P. brasiliensis isolates was studied and the export of these enzymes was followed as a function of culture time. The fungus was grown in neopeptone, BSA, elastin or collagen medium. The culture medium was assayed for azocollytic, elastinolytic and caseinolytic activity. Proteolytic activity was also analysed by electrophoresis of the culture medium on gelatin and casein substrate gels. P. brasiliensis expressed relatively high levels of azocoll, elastin and casein degrading activity in all types of medium, except in neopeptone medium. Generally, expression of azocollytic activity peaked during the third week of culture and caseinolytic activity during the fourth week of culture. Azocollytic activity was highest at pH 4.0 and caseinolytic activity at pH 8.0. Elastinolytic activity was also highest at pH 8.0. This activity, as well as the others, may provide the fungus with a source of carbon and nitrogen and may also be responsible for the invasion of host tissues, such as pulmonary elastic fiber, by P. brasiliensis.
Resumo:
The purpose of this work was to purify a protease from Penicillium waksmanii and to determine its biochemical characteristics and specificity. The extracellular protease isolated that was produced by P. waksmanii is a serine protease that is essential for the reproduction and growth of the fungus. The protease isolated showed 32 kDa, and has optimal activity at pH 8.0 and 35 C towards the substrate Abz-KLRSSKQ-EDDnp. The protease is active in the presence of CaCl2, KCl, and BaCl, and partially inhibited by CuCl2, CoCl2 and totally inhibited by AlCl3 and LiCl. In the presence of 1 M urea, the protease remains 50 % active. The activity of the protease increases 60 % when it is exposed to 0.4 % nonionic surfactant-Triton X-100 and loses 10 % activity in the presence of 0.4 % Tween-80. Using fluorescence resonance energy transfer analysis, the protease showed the most specificity for the peptide Abz-KIRSSKQ-EDDnp with k cat/K m of 10,666 mM-1 s-1, followed by the peptide Abz-GLRSSKQ-EDDnp with a k cat/K m of 7,500 mM -1 s-1. Basic and acidic side chain-containing amino acids performed best at subsite S1. Subsites S2, S3, S′ 2, and S′ 1, S ′ 3 showed a preference for binding for amino acids with hydrophobic and basic amino acid side chain, respectively. High values of k cat/K m were observed for the subsites S2, S3, and S′ 2. The sequence of the N-terminus (ANVVQSNVPSWGLARLSSKKTGTTDYTYD) showed high similarity to the fungi Penicillium citrinum and Penicillium chrysogenum, with 89 % of identity at the amino acid level. © 2012 Springer Science+Business Media New York.
Resumo:
Microbial β-glucosidases have been used for the enhancement of wine aroma. Nevertheless, few enzymes are active in the conditions of winemaking. In this work, the production of a β-glucosidase by an Aureobasidium pullulans strain (Ap-β-gl) isolated from grape ecosystems was evaluated. The maximum enzymatic synthesis using submerged fermentation was after 96 h of growth in complex media containing 20 g/L of cellobiose as the sole carbon source. The crude enzyme (Ap-β-gl) showed optimal pH at 5.5 and two peaks of optimum temperature (at 45 and 70 C). It showed a wide range of pH stability, stability at low temperatures, and tolerance to ethanol, showing suitable characteristics for winemaking conditions. The hydrolysis of glycosidic terpenes by Ap-β-gl was studied, and its ability to efficiently release free terpenols was demonstrated by gas chromatography/mass spectrometry. The enzymatic treatment notably increased the amount of monoterpenes, showing good prospects for its potential application for the development of aroma in wines. © 2012 Springer Science+Business Media New York.
Resumo:
Two series of new chitosan derivatives were synthesized by reaction of deacetylated chitosan (CH) with propyl (CH-Propyl) and pentyl (CH-Pentyl) trimethylammonium bromides to obtain derivatives with increasing degrees of substitution (DS). The derivatives were characterized by 1H NMR and potentiometric titration techniques and their antifungal activities on the mycelial growth of Aspergillus flavus were investigated in vitro. The antifungal activities increase with DS and the more substituted derivatives of both series, CH-Propyl and CH-Pentyl, exhibited antifungal activities respectively three and six times higher than those obtained with commercial and deacetylated chitosan. The minimum inhibitory concentrations (MIC) were evaluated at 24, 48 and 72h by varying the polymer concentration from 0.5 to 16g/L and the results showed that the quaternary derivatives inhibited the fungus growth at polymer concentrations four times lower than that obtained with deacetylated chitosan (CH). The chitosans modified with pentyltrimethylammonium bromide exhibited higher activity and results are discussed taking into account the degree of substitution (DS). © 2012 Elsevier GmbH.
Resumo:
The physiological state of yeast cells changes during culture growth as a consequence of environmental changes (nutrient limitations, pH and metabolic products). Cultures that grow exponentially are heterogeneous cell populations made up of cells regulated by different metabolic and/or genetic control systems. The strain of baker's yeast selected by plating commercial compressed yeast was used for the production of glycerol-3- phosphate dehydrogenase. Glycerol-3-phosphate dehydrogenase (GPD) has been widely used in the enzyme assays with diverse compounds of industrial interest, such as glycerol or glycerol phosphate, as well as a number of important bioanalytical applications. Each cell state determines the level of key enzymes (genetic control), fluxes through metabolic pathways (metabolic control), cell morphology and size. The present study was carried out to determine the effects of environmental conditions and carbon source on GPD production from baker's yeast. Glucose, glycerol, galactose and ethanol were used as carbon sources. Glycerol and ethanol assimilations required agitation, which was dependent on the medium volume in the fermentation flask for the greatest accumulation of intracellular GPD. Enzyme synthesis was also affected by the initial pH of the medium and inoculum size. The fermentation time required for a high level of enzyme formation decreased with the inoculum size. The greatest amount of enzyme (0.45 U/ml) was obtained with an initial pH of 4.5 in the medium containing ethanol or glycerol. The final pH was maintained in YP-ethanol, but in the YP-glycerol the final pH increased to 6.9 during growth.
Resumo:
In recent decades, xylanases have been used in many processing industries. This study describes the xylanase production by Penicillium glabrum using brewer's spent grain as substrate. Additionally, this is the first work that reports the purification and characterization of a xylanase using this agroindustrial waste. Optimal production was obtained when P. glabrum was grown in liquid medium in pH 5.5, at 25 °C, under stationary condition for six days. The xylanase from P. glabrum was purified to homogeneity by a rapid and inexpensive procedure, using ammonium sulfate fractionation and molecular exclusion chromatography. SDS-PAGE analysis revealed one band with estimated molecular mass of 18.36 kDa. The optimum activity was observed at 60 °C, in pH 3.0. The enzyme was very stable at 50 °C, and high pH stability was verified from pH 2.5 to 5.0. The ion Mn2+ and the reducing agents β-mercaptoethanol and DTT enhanced xylanase activity, while the ions Hg2+, Zn2+, and Cu2+ as well as the detergent SDS were strong inhibitors of the enzyme. The use of brewer's spent grain as substrate for xylanase production cannot only add value and decrease the amount of this waste but also reduce the xylanase production cost. © 2013 Adriana Knob et al.
Resumo:
Although many Brazilian sugar mills initiate the fermentation process by inoculating selected commercial Saccharomyces cerevisiae strains, the unsterile conditions of the industrial sugar cane ethanol fermentation process permit the constant entry of native yeast strains. Certain of those native strains are better adapted and tend to predominate over the initial strain, which may cause problems during fermentation. In the industrial fermentation process, yeast cells are often exposed to stressful environmental conditions, including prolonged cell recycling, ethanol toxicity and osmotic, oxidative or temperature stress. Little is known about these S. cerevisiae strains, although recent studies have demonstrated that heterogeneous genome architecture is exhibited by some selected well-adapted Brazilian indigenous yeast strains that display high performance in bioethanol fermentation. In this study, 11 microsatellite markers were used to assess the genetic diversity and population structure of the native autochthonous S. cerevisiae strains in various Brazilian sugar mills. The resulting multilocus data were used to build a similarity-based phenetic tree and to perform a Bayesian population structure analysis. The tree revealed the presence of great genetic diversity among the strains, which were arranged according to the place of origin and the collection year. The population structure analysis revealed genotypic differences among populations; in certain populations, these genotypic differences are combined to yield notably genotypically diverse individuals. The high yeast diversity observed among native S. cerevisiae strains provides new insights on the use of autochthonous high-fitness strains with industrial characteristics as starter cultures at bioethanol plants. © 2013 John Wiley & Sons, Ltd.
Resumo:
The purpose of this study was to evaluate the in vitro anticandidal activity of a methanolic extract of Syngonanthus nitens scapes against different Candida species and clinical isolates from patients with vulvovaginal candidiasis (VVC), and its effect in vivo in the treatment of vaginal infection. Chemical characterization of the extract was performed by HPLC-UV analyses and showed the presence of flavones derivatives. The extract was effective against several Candida strains from our collection and species recovered from VVC patients, and was able to inhibit the yeast-hyphal transition. No cytotoxic activity against human female reproductive tract epithelial cells and no hemolytic activity against human red blood cells were observed. In the in vivo model of VVC, we evaluated the efficacy of the intravaginal treatment with a cream containing the extract at doses of 0.5, 1.0 and 2.0%. The treatment eradicated the vaginal fungal burden in infected rats after 8 days of treatment. S. nitens extract could be considered as an effective and non-toxic natural antifungal agent in the treatment of vulvovaginal candidiasis. © 2013 ISHAM.
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
Pós-graduação em Patologia - FMB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)