19 resultados para field crops


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physical fractions (free light fraction, intra-aggregate light fraction and heavy fraction) of soil organic matter (SOM) are good indicators of soil quality for sustainable land use. The objective of this study was to evaluate the effect of cover crops on total organic carbon (TOC) and physical fractions of soil organic matter in soil under a no-tillage system (NTS) and a conventional tillage system (CTS, one plowing and two disking). A three-year field experiment was carried out as a cover crop-rice (Oryza sativa)-cover crop-rice rotation. Treatments included cover crops (Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and pearl millet (Pennisetum glaucum), fallow, till or no till. The SOM was physically fractionated in free light fraction (FLF), intra-aggregates light fraction (IALF) and heavy fraction (HF). The levels of C in whole soil were also evaluated, as well as C in the light fractions (FLF+IALF) and in the HF. Results indicated that concentrations of C in the FLF and IALF in surface soils (0-0.05m) were much higher (10.8 and 1.95gkg-1, respectively) than that in the 0.05-0.1m soil depth (7.68 and 1.54gkg-1, respectively) and in the 0.1-0.2m soil depth (4.98 and 1.24gkg-1, respectively). The NTS resulted in higher levels of FLF (12.2gkg-1) and IALF (2.19gkg-1) than with CTS (1.37-7.30gkg-1). Millet had the highest C (19.5gkg-1) and N (1.1gkg-1) concentrations in soil. There was an accumulation of TOC and total N in the surface soil with cover crops, and concentrations of TOC were higher in the HF (79.0%) than in the light fractions (21.0%). Although SOM changed little during the two years of this experiment, the various C fractions were significantly affected by the tillage treatments. We conclude that SOM physical fractionation allowed seeing significant differences caused by the soil management in the organic matter dynamics in a short period of time. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the hypothesis that alternative substrates should improve the yield of lettuce crops by producing better quality seedlings, the objective of this work was to evaluate the effect of different substrates on the production of seedlings of this species, and their growth in the field. The study was in two stages. The first consisted of the production of lettuce seedlings, and the second assessed their development in the field. Four alternative substrates were tested, obtained by mixing together a sieved vermicompost from which all clumps had been removed, sterilized sand, charred rice husks and basalt powder. The commercial substrate, Plantmax HA®, was also tested. In the first phase, which was conducted in a completely randomised design with four replications, the height, root length, number of leaves, leaf area and dry weight of the seedlings were all evaluated 28 days after sowing. In the second phase, which was carried out in the field in a randomised block design with four replications, the plants were harvested 50 days after transplanting and the head diameter, fresh weight, number of leaves and leaf and stem dry weight were evaluated. The alternative substrates produced larger seedlings in less time than the commercial substrate, resulting in a reduction of 10 days in the total crop cycle. The reduction in the time between sowing and harvesting, together with those aspects relating to sustainability, are the main advantages of the use of alternative substrates, since in the field crop production did not differ between treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cultivation of strawberry in plastic tunnels has increased considerably in Norway and in southeastern Brazil, mainly in an attempt to protect the crop from unsuitable climatic factors and some diseases as well as to allow growers to expand the traditional production season. It has been hypothesized that cultivation under tunnels could increase the incidence of one of its major pests in many countries where strawberry is cultivated, including Norway and Brazil, the two spotted spider mite, Tetranychus urticae. The objective of this study was to evaluate the effect of the use of tunnels on the incidence of T. urticae and on its natural enemies on strawberry in two ecologically contrasting regions, Norway (temperate) and southeastern Brazil (subtropical). In both countries, peak densities of T. urticae in tunnels and in the open fields were lower than economic thresholds reported in the literature. Factors determining that systematically seem to be the prevailing relatively low temperature in Norway and high relative humidity in both countries. The levels of occurrence in Norway and Brazil in 2010 were so low that regardless of any potential effect of the use of tunnel, no major differences were observed between the two cropping systems in relation to T. urticae densities. In 2009 in Norway and in 2011 in Brazil, increase in T. urticae population seemed to have been restrained mainly by rainfall in the open field and by predatory mites in the tunnels. Phytoseiids were the most numerous predatory mite group of natural occurrence on strawberry, and the prevalence was higher in Brazil, where the most abundant species on strawberry leaves were Neoseiulus anonymus and Phytoseiulus macropilis. In Norway, the most abundant naturally occurring phytoseiids on strawberry leaves were Typhlodromus (Anthoseius) rhenanus and Typhlodromus (Typhlodromus) pyri. Predatory mites were very rare in the litter samples collected in Norway. Infection rate of the pest by the fungus Neozygites floridana (Neozygitaceae) was low. The results of this work suggest that in Norway the use of tunnels might not affect the population densities of T. urticae on strawberry in years of lower temperatures. When temperature is not a limiting factor for the development of T. urticae in that country (apparently always the case in southern Brazil), strawberry cultivation in the tunnels may allow T. urticae to reach higher population levels than in open fields (because of the provided protection from the direct impact of rainfall), but natural enemies may prevent higher levels from being reached.