79 resultados para epigenetic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some patients with obsessive-compulsive disorder (OCD) exhibit an unsatisfactory reduction in symptom severity despite being treated with all the available therapeutic alternatives. The clinical variables associated with treatment-refractoriness in OCD are inconsistently described in the literature.Methods: To investigate factors associated with treatment-reftactoriness of patients with OCD, we conducted a case-control study, comparing 23 patients with treatment-refractory OCD to 26 patients with treatment-responding OCD.Results: the factors associated with refractoriness of OCD were higher severity of symptoms since the onset of OCD (P < 0.001), chronic course (p=0.003), lack of a partner (p=0.037), unemployment (p=0.025), low economic status (p=0.015), presence of obsessive-compulsive symptoms of sexual/religious content (p=0.043), and higher scores on family accommodation (P < 0.001). Only the three latter variables remained significantly associated with treatment-reftactoriness after regression analyses. Limitations: small sample size, the biases and drawbacks inherent to a case-control study, and the inclusion criteria used to define the study groups may have limited the generalisation of the results.Conclusion: A major strength of this study is the systematic and structured evaluation of a vast array of variables related to the clinical expression of OCD, including epigenetic factors and ratings derived from instruments evaluating family accommodation. The presence of sexual/religious symptoms, low economic status and high modification on family function due to OCD were independently associated with, treatment-refractoriness. Future longitudinal studies are warranted to verify if these variables represent predictive factors of treatment non-response. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The etiology of hormone-induced cancers has been considered to be a combination of genotoxic and epigenetic events. Currently, the Comet assay is widely used for detecting genotoxicity because it is relatively simple, sensitive, and capable of detecting various kinds of DNA damage. The present study evaluates the genotoxic potential of endogenous and synthetic sex hormones, as detected by the Comet assay. Blood cells were obtained from 12 nonsmoking and 12 smoking women with regular menstrual cycles and from 12 nonsmoking women taking low-dose oral contraceptives (OC). Peripheral blood samples were collected at three phases of the menstrual cycle (early follicular, mean follicular, and luteal phases), or at three different moments of oral contraceptive intake. Three blood samples were also collected from 12 healthy nonsmoking men, at the same time as oral contraceptive users. Results showed no significant difference in the level of DNA damage among the three moments of the menstrual cycle either in nonsmoking and smoking women, or between them. No significant difference in DNA damage was also observed among oral contraceptive users, nonusers, and men. Together, these data indicate lack of genotoxicity induced by the physiological level of the female sex hormones and OC as assessed by the alkaline Comet assay. In conclusion, normal fluctuation in endogenous sex hormones and use of low-doses of oral contraceptive should not interfere with Comet assay data when this technique is used for human biomonitoring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Suppressor of cytokine signaling 3 (SOCS3) is an inducible endogenous negative regulator of signal transduction and activator of transcription 3 (STAT3). Epigenetic silencing of SOCS3 has been shown in head and neck squamous cell carcinoma (HNSCC), which is associated with increased activation of STAT3. There is scarce information on the functional role of the reduction of SOCS3 expression and no information on altered subcellular localization of SOCS3 in HNSCC.Methodology/Principal Findings: We assessed endogenous SOCS3 expression in different HNSCC cell lines by RT-qPCR and western blot. Immunofluorescence and western blot were used to study the subcellular localization of endogenous SOCS3 induced by IL-6. Overexpression of SOCS3 by CMV-driven plasmids and siRNA-mediated inhibition of endogenous SOCS3 were used to verify the role of SOCS3 on tumor cell proliferation, viability, invasion and migration in vitro. In vivo relevance of SOCS3 expression in HNSCC was studied by quantitative immunohistochemistry of commercially-available tissue microarrays. Endogenous expression of SOCS3 was heterogeneous in four HNSCC cell lines and surprisingly preserved in most of these cell lines. Subcellular localization of endogenous SOCS3 in the HNSCC cell lines was predominantly nuclear as opposed to cytoplasmic in non-neoplasic epithelial cells. Overexpression of SOCS3 produced a relative increase of the protein in the cytoplasmic compartment and significantly inhibited proliferation, migration and invasion, whereas inhibition of endogenous nuclear SOCS3 did not affect these events. Analysis of tissue microarrays indicated that loss of SOCS3 is an early event in HNSCC and was correlated with tumor size and histological grade of dysplasia, but a considerable proportion of cases presented detectable expression of SOCS3.Conclusion: Our data support a role for SOCS3 as a tumor suppressor gene in HNSCC with relevance on proliferation and invasion processes and suggests that abnormal subcellular localization impairs SOCS3 function in HNSCC cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic and epigenetic alterations in choroid plexus tumors, a rare neuroepithelial neoplasm most frequently detected in children, are poorly characterized. Epigenetic silencing associated with aberrant CpG island methylation is one mechanism leading to the loss of tumor suppressor functions in cancer cells. Using methylation-specific polymerase chain reaction, the methylation patterns of the genes CDH1 (E-cadherin), RARB (retinoic acid receptor, beta), and SFN (stratifin; 14-3-3 sigma) were retrospectively investigated in eight choroid plexus tumors (five papillomas, two atypical papillomas, and one carcinoma), as well as in two normal cortexes obtained after autopsy from male individuals aged 6 months and 64 years. Among the six pediatric tumors, the mean age at diagnosis was 1.8 years old (range, 0.2-6) and the two adult tumors were detected in a 66-year-old man and a 45-year-old woman. A high frequency of hypermethylation was detected in CDH1 and SFN genes in tumoral and normal cortex tissues. Tumor-specific RARB hypermethylation was observed in four papillomas. Further studies are required to evaluate the role of aberrant methylation in choroid plexus tumor progression. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Head and neck cancer remains a morbid and often fatal disease and at the present time few effective molecular markers have been identified. The purpose of the present work was to identify new molecular markers for head and neck squamous cell carcinoma (HNSCC). We applied methylation-sensitive arbitrarily primed PCR (MS/APPCR) to isolate sequences differentially methylated in HNSCC. The most frequently hypermethylated fragment we found maps close to a cytosine guanine dinucleotide (CpG) island on chromosome 9q33.2, and hypermethylation of this CpG island was associated with transcriptional silencing of an alternative transcript of the LHX6 gene. Using combined bisulfite restriction analysis (COBRA), hypermethylation of this fragment was detected in 13 of 14 (92.8%) HNSCC cell lines studied and 21 of 32 (65.6%) primary tumors, whereas little or no methylation was seen in 10 normal oral mucosa samples. We extended this investigation to other cancer cell lines and methylation was found in those derived from colon, breast, leukemia and lung, and methylation was also found in 12/14 primary colon tumors. These findings suggest that differentially methylated (DIME)-6 hypermethylation is a good cancer marker in HNSCC as well as in other kinds of neoplasias and confirm the importance of searching for markers of epigenetic dysregulation in cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of the present study was to investigate the effect of thermal conditioning, (through exposure to heat stress), during pre-hatch development on some physiological responses of post-hatch broilers to a post-natal heat stress challenge. Exposure to heat stress at this stage, we hope, may possibly induce epigenetic heat adaptation. Incubating eggs were exposed to temperature of 39.0degreesC for 2 h from Day 13 to 17 of incubation. At 33, 35, 37, 39, 41 and 43 d of age, the broilers hatched from these eggs were housed individually in open-circuit respiration cells. The climatic chambers were set to 22degreesC and increased to 30degreesC for 4 h. O-2 consumption and CO2 production of each chicken was monitored continuously in order to calculate the heat production. Blood samples were obtained before and during the 4 h heat stress. Thermal conditioning during incubation did not affect the plasma T-4, corticosterone, glucose, uric acid and CK concentrations. Temperature challenge, decreased plasma T-3 of broilers of both groups but the decrease was greater in pre-conditioned broilers compared with controls. A similar trend was observed for triglycerides. These changes did not affect total heat production. Since decreased T3 and triglyceride levels are part of the mechanisms for thermoregulation, these suggest that thermal conditioning during incubation can improve the broiler chicken capability for thermotolerance at later post-hatch age. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. IGF2 and H19 are reciprocal imprinted genes with paternal and maternal monoallelic expression, respectively. This is interesting, because IGF2 is known as a growth factor, and H19 encodes a RNA with putative tumor suppressor action. Furthermore, IGF2 and H19 are linked genes located on chromosome 11p15.5, a common site of loss of heterozygosity in human cancers.Methods. We performed an allelic-typing assay using a PCR-RFLP-based method for identification of heterozygous Informative cases in head and neck squamous cell carcinomas. Tumoral total RNA was extracted from each of the heterozygotes and further studied by RT-PCR analysis.Results. We detected the expression of the IGF2 gene in 10 of 10 informative cases. Two cases exhibited LOI of the IGF2 gene as evidenced by biallelic expression, and in another case, LOH was coupled with monoallelic expression of this growth factor. LOI for the H19 gene was observed in 1 of 14 informative samples analyzed. In this case, we also detected parallel mono-allelic expression of the IGF2 gene. Down-regulation of the H19 gene was observed in 10 of 14 cases.Conclusion. These findings support the hypothesis that H19 may be a tumor suppressor gene involved In head and neck carcinogenesis. Furthermore, our data showed that genetic and epigenetic chances at 11p15.5 could lead to abnormal expression of imprinted genes in HNSCC. (C) 2001 John Wiley & Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previously, we reported that thermal conditioning at 39degreesC on days 13-17 of incubation of broiler eggs enabled thermotolerance during post-hatch growth (J. Therm. Biol. 28 (2003) 133). Tolerance to a temperature of 30degreesC was accompanied by changes in thyroid hormones and metabolic parameters. In the current study, we determined the mechanism of epigenetic heat adaptation during embryonic age by measuring blood physiological parameters that may be associated with the ultimate effects of thermal conditioning. Hatching eggs from Ross breeders were subjected to heat treatment of 39degreesC at days 13, 14, 15, 16 and 17 of incubation for 2 h per day. Control eggs were incubated at 37.6degreesC. Samples of eggs were withdrawn on each day of thermal conditioning and at internal pipping (IP) to obtain blood samples from embryos. The remaining eggs were weighed at day 18 and transferred to hatchers. The timing of IP, external pipping (EP) and hatching were monitored every 2 h. At hatch, chicks were weighed and hatchability was determined. Blood samples were obtained from samples of day-old chicks. T3, T4, corticosterone, pCO(2), pO(2) levels were determined in the blood. Blood pH was measured and T3/T4 ratios were calculated. Heat conditioning significantly increased corticosterone and pO(2) levels and blood pH but depressed pCO(2) at day 14. These were followed by a significant depression of T4 level on day 15. Remarkably, at day 16, all these parameters were back to normal as in the control embryos. Hatching was delayed by thermal conditioning probably as a result of the depressed corticosterone levels at IP. Hatchability was also lower in the heat-treated group but 1-day old chick weights were comparable to those of the controls. The result suggests that epigenetic thermal conditioning involves changes in these physiological parameters and probably serve as a method for epigenetic temperature adaptation since the same mechanisms are employed for coping with heat during post-embryonic growth. It also suggests that days 14-15 may be the optimal and most sensitive timing for evoking this mechanism during embryonic development. The adverse effects of heat treatment observed in this study may have been due to the continued exposure to heat until day 17. Fine-tuning thermal conditioning to days 14-15 only may improve these production parameters. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the exclusively maternal inheritance of mitochondria, mitochondrial genotypes can be coupled to a particular nuclear genotype by continuous mating of founder females and their female offspring to males of the desired nuclear genotype. However, backcrossing is a gradual procedure that, apart from being lengthy, cannot ascertain that genetic and epigenetic changes will modify the original nuclear genotype. Animal cloning by nuclear transfer using host ooplasm carrying polymorphic mitochondrial genomes allows, among other biotechnology applications, the coupling of nuclear and mitochondrial genotypes of diverse origin within a single generation. Previous attempts to use Bos taurus oocytes as hosts to transfer nuclei from unrelated species led to the development to the blastocyst stage but none supported gestation to term. Our aim in this study was to determine whether B. taurus oocytes support development of nuclei from the closely related B. indicus cattle and to examine the fate of their mitochondrial genotypes throughout development. We show that indicus:taurus reconstructed oocytes develop to the blastocyst stage and produce live offspring after transfer to surrogate cows. We also demonstrate that, in reconstructed embryos, donor cell-derived mitochondria undergo a stringent genetic drift during early development leading, in most cases, to a reduction or complete elimination of B. indicus mtDNA. These results demonstrate that cross-subspecies animal cloning is a viable approach both for matching diverse nuclear and cytoplasmic genes to create novel breeds of cattle and for rescuing closely related endangered cattle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low efficiency observed in cloning by nuclear transfer is related to an aberrant gene expression following errors in epigenetic reprogramming. Recent studies have focused on further understanding of the modifications that take place in the chromatin of embryos during the preimplantation period, through the use of chromatin modifying agents. The goal of these studies is to identify the factors involved in nuclear reprogramming and to adjust in vitro manipulations in order to better mimic in vivo conditions. Therefore, proper knowledge of epigenetic reprogramming is necessary to prevent possible epigenetic errors and to improve efficiency and the use of in vitro fertilization and cloning technologies in cattle and other species. Copyright © 2011 Fabio Morato Monteiro et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: The role of epigenetic regulation in inflammatory diseases such as periodontitis is poorly known. The aim of this study was to assess whether Porphyromonas gingivalis lipopolysaccharide (LPS) can modulate gene expression levels of the some enzymes that promote epigenetic events in cultures of the human keratinocytes and gingival fibroblasts. In addition, the same enzymes were evaluated in gingival samples from healthy and periodontitis-affected individuals. Materials and methods: Primary gingival fibroblast and keratinocyte (HaCaT) cultures were treated with medium containing P. gingivalis LPS or P. gingivalis LPS vehicle for 24 h. After this period, cell viability was assessed by MTT test and total RNA extracted to evaluate gene expression levels of the following enzymes by qRT-PCR: DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3a (DNMT3a), histone demethylases Jumonji domain containing 3 (JMJD3) and ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX). To evaluate gene expression in healthy and periodontitis-affected individuals, total RNA was extracted from biopsies of gingival tissue from healthy and periodontitis sites, and gene expression of DNMT1, DNAMT3a, JMJD3, and UTX was evaluated by qRT-PCR. Results: No significant differences were found in the gene expression analysis between healthy and periodontitis-affected gingival samples. The results showed that LPS downregulated DNMT1 (p < 0. 05), DNMT3a (p < 0. 05), and JMJD3 (p < 0. 01) gene expression in HaCaT cells, but no modulation was observed in gingival fibroblasts. Conclusion: P. gingivalis LPS exposure to human HaCaT keratinocytes downregulates gene expression of the enzymes that promote epigenetic events. Clinical relevance: The advance knowledge about epigenetic modifications caused by periodontopathogens may to possibly led to the development of new periodontal therapies. © 2012 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During initial development, both X chromosomes are active in females, and one of them must be silenced at the appropriate time in order to dosage compensate their gene expression levels to male counterparts. Silencing involves epigenetic mechanisms, including histone deacetylation. Major X chromosome inactivation (XCI) in bovine occurs between hatching and implantation, although in vitro culture conditions might disrupt the silencing process, increasing or decreasing X-linked gene expression. In this study, we aimed to address the roles of histone deacetylase inhibition by trichostatin A (TSA) on female preimplantation development.We tested the hypothesis that by enhancing histone acetylation, TSA would increase the percentage of embryos achieving 16-cell stage, reducing percentage of embryos blocked at 8-cell stage, and interfere with XCI in IVF embryos. We noticed that after TSA treatment, acetylation levels in individual blastomeres of 8-16 cell embryos were increased twofold on treated embryos, and the samewas detected for blastocysts. Changes among blastomere levels within the same embryo were diminished on TSA group, as low-acetylated blastomeres were no longer detected. The percentage of embryos that reached the 5th cleavage cycle 118 h after IVF, analyzed by Hoechst staining, remained unaltered after TSA treatment. Then, we assessed XIST and G6PD expression in individual female bovine blastocysts by quantitative real-time PCR. Even though G6PD expression remained unaltered after TSA exposure, XIST expression was eightfold decreased, and we also detected a major decrease in the percentage of blastocysts expressing detectable XIST levels after TSA treatment. Based on these results, we conclude that HDAC is involved on XCI process in bovine embryos, and its inhibition might delay X chromosome silencing and attenuate aberrant XIST expression described for IVF embryos. © 2013 Society for Reproduction and Fertility.