22 resultados para environmental gradients
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Spatial and temporal patterns in the distribution of the zooplankton in a large tropical reservoir were investigated for a year. The zooplankton was sampled at 10 limnetic stations. Rotifera were richest in number of species and individuals, especially in transitional river-lake zones. They were dominant during the summer in nine sampling stations, and decreased in spring. The main species were Polyarthra vulgaris, Keratella americana, K. cochlearis and Conochilus unicornis. Polyarthra vulgaris was widely distributed. Keratella was more abundant at upstream stations, and a dense population of C. unicornis was observed in a lateral, sheltered compartment. Among copepods, Calanoida were more abundant in spring and Cyclopoida in autumn. Longitudinal gradients in the Calanoida/Cyclopoida relation were observed, with the predominance of Cyclopoida at upstream sampling stations and Calanoida in more lacustrine zones towards the dam. Notodiaptomus iheringi, Thermocyclops minutus and T. decipiens were the main species. Diaphanosoma birgei, the most abundant cladoceran, mainly occurred in lacustrine zones, while Moina minuta was more abundant at riverine sampling stations, generally in association with Bosminopsis deitersi. Peaks of tintinnid protozoans were observed in upstream zones during summer and spring.
Resumo:
Acid mine drainage (AMD) is a serious environmental problem that creates acidic solution with high Mn concentrations. The speciation of residual Mn from AMD after an active treatment involving the addition of a neutralizing agent can reliably evaluate the treatment efficiency and provide knowledge of the Mn species being inputted into the environment. The aim of this study was to evaluate the in situ lability and speciation of Mn using the diffusive gradients in thin films (DGT) technique with treated drainage water from a uranium mine (TAMD). DGT devices with different binding phases (Chelex-100 and P81 and DE81membranes) were used to perform the in situ speciation of Mn. A comparison of the results from deploying DGT in the laboratory and in situ shows that the speciation of Mn in TAMD should be performed in situ. Linear deployment curves (from in situ experiments) indicate that the DGT device containing the Chelex-100 binding phase can be used to evaluate Mn lability in TAMD. The labile Mn fraction (from in situ measurements) obtained using the device containing the Chelex-100 resin ranged from 63 to 81% of the total Mn concentration and, when compared to the speciation obtained using the CHEAQS software, indicated that this device was capable of uptaking the free Mn2+ and a portion of the MnSO4(aq). The values obtained using the DGT technique were compared to those from on site solid phase extraction, and a good agreement was found between the results. The amount of negative Mn species sampled by DE81 device was insignificant (<1.5%) for all of the sites. Sites containing a relatively small amount of Ca (<40mgL-1) and measured using devices containing the P81 membrane agreed with the concentration predicted by the CHEAQS software for positive Mn species (Mn2+ and Mn(OH)+). Nevertheless, the speciation obtained using the CHEAQS software indicated that the concentrations of positive Mn species were underestimated for sites with relatively high Ca concentrations (>150mgL-1), which take place due to the saturation of binding sites in the P81 membrane. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Savannas are characterized by sparsely distributed woody species within a continuous herbaceous cover, composed mainly by grasses and small eudicot herbs. This vegetation structure is variable across the landscape, with shifts from open grassland to savanna woodland determined by factors that control tree density. These shifts often appear coupled with environmental variations, such as topographic gradients. Here we investigated whether herbaceous and woody savanna species differ in their use of soil water along a topographic gradient of about 110 m, spanning several vegetation physiognomies generally associated with Neotropical savannas. We measured the delta H-2 and delta O-18 signatures of plants, soils, groundwater and rainfall, determining the depth of plant water uptake and examining variations in water uptake patterns along the gradient. We found that woody species use water from deeper soil layers compared to herbaceous species, regardless of their position in the topographic gradient. However, the presence of a shallow water table restricted plant water uptake to the superficial soil layers at lower portions of the gradient. We confirmed that woody and herbaceous species are plastic with respect to their water use strategy, which determines niche partitioning across topographic gradients. Abiotic factors such as groundwater level, affect water uptake patterns independently of plant growth form, reinforcing vegetation gradients by exerting divergent selective pressures across topographic gradients. (C) 2013 SAAB. Published by Elsevier B.V. All rights reserved.
Resumo:
Estimation of tropospheric gradients in GNSS data processing is a well-known technique to improve positioning (e.g. Bar-Sever et al., 1998; Chen and Herring, 1997). More recently, several authors also focused on the estimation of such parameters for meteorological studies and demonstrated their potential benefits (e.g. Champollion et al., 2004). Today, they are routinely estimated by several global and regional GNSS analysis centres but they are still not yet used for operational meteorology.This paper discusses the physical meaning of tropospheric gradients estimated from GPS observations recorded in 2011 by 13 permanent stations located in Corsica Island (a French Island in the western part of Italy). Corsica Island is a particularly interesting location for such study as it presents a significant environmental contrast between the continent and the sea, as well as a steep topography.Therefore, we estimated Zenith Total Delay (ZTD) and tropospheric gradients using two software: GAMIT/GLOBK (GAMIT version 10.5) and GIPSY-OASIS II version 6.1. Our results are then compared to radiosonde observations and to the IGS final troposphere products. For all stations we found a good agreement between the ZWD estimated by the two software (the mean of the ZWD differences is 1 mm with a standard deviation of 6 mm) but the tropospheric gradients are in less good agreement (the mean of the gradient differences is 0.1 mm with a standard deviation of 0.7 mm), despite the differences in the processing strategy (double-differences for GAMIT/GLOBK versus zero-difference for GIPSY-OASIS).We also observe that gradient amplitudes are correlated with the seasonal behaviour of the humidity. Like ZWD estimates, they are larger in summer than in winter. Their directions are stable over the time but not correlated with the IWV anomaly observed by ERA-Interim. Tropospheric gradients observed at many sites always point to inland throughout the year. These preferred directions are almost opposite to the largest slope of the local topography as derived from the world Digital Elevation Model ASTER GDEM v2. These first results give a physical meaning to gradients but the origin of such directions need further investigations.