25 resultados para electroanalytical determination
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work describes an electroanalytical method for determining gold(I) thiomalate, aurothiomalate, widely used for treatment of reumatoid arthiritis, using a screen-printed carbon electrode (SPCE). Aurothiomalate (AuTM) was determined indirectly at the same electrode by accumulating it first at -1.5 V vs. printed carbon. At this potential in the adsorbed state, the AuTM is reduced to Au(0), which is then oxidized at two steps at -0.22 V and +0.54 V on SPCE. Using optimized conditions of 60 s deposition time, -1.5 V (vs. printed carbon) accumulation potential, 100 mV s(-1) scan rate, linear calibration graphs can be obtained by monitoring the peak at +0.54 V for AuTM in HCl 0.1 mol L-1 from 1.43 x 10(-6) to 1.55 x 10(-4) mol L-1. A limit of detection obtained was 6.50 x 10(-7) mol L-1, and the relative standard deviation from five measurements of 3.0 x 10(-5) mol L-1 AuTM is 4.5%. The method was successfully applied for AuTM determination in human urine sample.
Resumo:
This work describes an efficient, fast, and reliable analytical methodology for mercury determination in urine samples using stripping chronopotentiometry at gold film electrodes. The samples were sonicated in the presence of concentrated HCl and H2O2 for 15 min in order to disrupt the organic ligands and release the mercury. Thirty samples can be treated over the optimized region of the ultrasonic bath. This sample preparation was enough to allow the accurate stripping chronopotentiometric determination of mercury in the treated samples. No background currents and no passivation of the gold film electrode due to the sample matrix were verified. The samples were also analyzed by cold vapour atomic absorption spectrometry (CV-AAS) and good agreement between the results was verified. The analysis of NIST SRM 2670 (Toxic Metals in Freeze-Dried Urine) also validated the proposed electroanalytical method. Finally, this method was applied for mercury evaluation in urine of workers exposed to hospital waste incinerators. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this work, electrochemical oxidation of albendazole (ABZ) was carried out using a glassy carbon-rotating disk electrode. Development of electroanalytical methodology for ABZ quantification in pharmaceutical formulations was also proposed by using linear sweep voltammetric technique. Electrochemical oxidation is observed for ABZ at E 1/2 = 0.99:V vs. Ag/AgCl sat, when an anodic wave is observed. Kinetic parameters obtained for ABZ oxidation exhibited a standard heterogeneous rate constant for the electrodic process equal to (1.51 ± 0.07) ± 10 -5:cm:s -1, with a αn a value equal to 0.76. Limiting current dependence against ABZ concentration exhibited linearity on 5.0 ± 10 -5 to 1.0 ± 10 -2:mol:l -1 range, being obtained a detection limit of 2.4 ± 10 -5:mol:l -1. Proposed methodology was applied to ABZ quantification in pharmaceutical formulations. © 2005 Elsevier SAS. All rights reserved.
Resumo:
Silica gel with a specific area of 382 m2 g-1 and an average pore diameter of 60 Å was chemically modified with 2-amino-1,3,4-thiadiazole, for the purpose of selective adsorption of heavy metals ions and possible use as a chemically modified carbon paste electrode (CMCPE). The following properties of this functionalized silica gel are discussed: selective adsorption of heavy metal ions measured by batch and chromatographic column techniques, and utilization as preconcentration agent in a chemically modified carbon paste electrode (CMCPE) for determination of mercury(II). The chemical selectivity of this functional group and the selectivity of voltammetry were combined for preconcentration and determination. ©2006 Sociedade Brasileira de Química.
Resumo:
Pyrazinamide (Pyrazinecarboxamide-PZA) is a drug that is used to treatment tuberculosis. In the present work, the voltammetric behavior of PZA was studied using a screen-printed modified electrode (SPCE). The modified electrode was constructed using poly-histidine films, and it showed an electrocatalytic effect, thus promoting a decrease in PZA reduction potential and improving the voltammetric response. Cyclic voltammetry and electrochemical impedance spectroscopy techniques have been employed in order to elucidate of the electrodic reaction. The results allowed the proposal that in the PZA reduction, a further chemical reaction occurs that corresponds to a second-order process which is subsequent to the electrode reaction. In addition, a sensitive voltammetric method was developed, and it was successfully applied for PZA determination in human urine samples. The best response was found using SPCE modified with poly-histidine prepared by histidine monomer electropolymerization (SPCE/EPH). The electroanalytical performance of the SPCE/EPH was investigated by linear sweep (LSV), differential pulse (DPV), and square wave voltammetry (SWV). A linear relationship between peak current and PZA concentrations was obtained from 9.0 × 10-7 to 1.0 × 10-4 mol L-1 by using DPV. The limit of detection at 5.7 × 10 -7 mol L-1 was estimated, and a relative standard deviation of the 5.0 × 10-6 mol L-1 of PZA of 10 measurement was 3.7%. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Different solid composites made by mechanical dispersions of graphite particles into heated paraffin (from 65 to 80% graphite, in mass) were prepared and assessed in order to optimize their use in electrochemical and electroanalytical procedures for bioanalysis. Besides these, composites were also evaluated by thermoanalytical techniques aiming to study their conservation and long-term stability (over eight months without special care), among others. Best results were found at 80% m/m graphite in paraffin. Such electrode combines low-cost, stability, sensitivity, ease of maintenance and clearance, besides the possibilities of manufacture in many different forms and shapes (with or without modifications) and applicability in a wide range of pH. Electrochemical studies by different voltammetric techniques involving vitamins from complex B (riboflavin and pyridoxine) leaded to a better understanding about their electrooxidative processes onto carbon-composite electrodes, specially regarding reversibility and pH-dependence. Data were also acquired and optimized with analytical purposes, being square-wave voltammetry in pH 4.2 chosen by its many advantages. Good linearity between peak responses as function of concentration were reached from 5 to 43 μmol L-1 for riboflavin (peak at -0.257 V) and up to 8.5 × 10-4 mol L -1 for pyridoxine (peak at +1.04 V), best studied conditions; limits of detection (at an S/N of 3) for both analites showed to be circa 1.0 mol L-1. Different commercial samples were analyzed for riboflavin (EMS® complex B syrup) and pyridoxine (Citoneurin 5000 Merck® ampoules) providing 96.6% and 98.7% recoveries, respectively.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)