110 resultados para dye intercalation
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We report here the utilization of atomid layer deposition to passivate surface map states in mosoporous TiO2 nanoparticles for solid state dye sensitized solar cells based on 9,9'-spirobifluorene (spiro-OMeTAD). By depositing ZrO2 films with angstrom-level precision, coating the mesoporous TiO2 produces over a two-fold enhancement in short-circuit current density, as compared to a control device. Impedance spectroscopy measurements provide evidence that the ZrO2 coating reduces recombination lossed at the TiO2/spiro-OMeTAD interface and passivates localized surface states. Low-frequency negative capacitances, frequently observed in nanocomposite solar cells, have been associated with the surface-state mediated charge transfer from TiO2 to the spiro-OMeTAD.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present work describes a more efficient methodology for the chlorination of water containing disperse dyes, where the chlorinated byproducts identified by mass spectra are compared. this investigation, we tested the degradation of Cl Disperse Blue 291 dye, 2-[(2-Bromo-4,6-dinitrophenyl)azo]-5-(diethylamino)-4-methoxyacetanilide) a commercial azo dye with mutagenic properties. The present work evaluates the photoelectrocatalytic efficiency of removing the Cl Disperse Blue 291 dye from a wastewater of the textile industry. We employed NaCl as a supporting electrolyte. It should be noted that photoelectrocatalytic techniques are non-conventional method of generating chlorine radicals. The by-products formed in this process were analyzed using spectrophotometry, liquid chromatography, dissolved organic carbon, mass spectral analysis and mutagenicity assays. The process efficiency was compared with the conventional chlorination process adopted during sewage and effluents treatment processes. This conventional chlorination process is less efficient in removing color, total organic carbon than the photoelectrochemistry technique. Furthermore, we shall demonstrate that the mutagenicity of the generated by-products obtained using photoelectrocatalysis is completely different from that obtained by the conventional oxidation of chloride ions in the drinking wafer treatment process. (C) 2012 Published by Elsevier B.V.