156 resultados para digestibilidade in vitro e in vivo
Resumo:
Objetivou-se avaliar o valor nutritivo de três espécies forrageiras tropicais: capim-tanzânia (Panicum maximum Jacq.), capim-marandu (Brachiaria brizantha) e capim-tifton 85 (Cynodon spp), em duas épocas do ano (janeiro-março e abril-junho) e em três idades de rebrota (28, 35 e 42 dias), por meio da composição química, do fracionamento de proteínas e carboidratos e da digestibilidade in vitro da matéria seca (DIVMS) e da matéria orgânica (DIVMO). O capim-marandu destacou-se no período de janeiro-março, com menores conteúdos de parede celular e fração B2 dos carboidratos e maiores valores de proteína bruta, fração A + B1, DIVMS e DIVMO, em comparação aos capins tanzânia e tifton 85, independentemente da idade de corte. O aumento da concentração de parede celular em detrimento ao conteúdo celular com o avanço da maturidade das plantas foi evidente no capim-marandu no período de janeiro-março, quando foram observados maior valor da fração B2, maior conteúdo de fibra em detergente neutro (FDN) e menor concentração da fração carboidratos não-fibrosos. No período de abril-junho, a composição em parede celular não apresentou diferenças evidentes com aumento da idade, devido às condições ambientais observadas. O capim-tanzânia apresenta, de modo geral, baixos valores de parede celular e altos valores de carboidratos não-fibrosos, DIVMS e DIVMO nesse período, seguido pelos capins marandu e tifton 85, respectivamente.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Topical formulations of piroxicam were evaluated by determination of their in vitro release and in vivo anti-inflammatory effect. The in vitro release assay demonstrated that the microemulsion (ME) systems provided a reservoir effect for piroxicam release. However, the incorporation of the ME into carboxyvinilic gel provoked a greater reduction in the release of piroxicam than the ME system alone. Anti-inflammatory activity was carried out by the cotton pellet granuloma inhibition bioassay. Topical anti-inflammatory effect of the piroxicam inclusion complex/ME contained in carboxyvinilic gel showed significant inhibition of the inflammation process (36.9%, P < 0.05). Subcutaneous administration of the drug formulations showed a significant effect on the inhibition of inflammation, 68.8 and 70.5%, P <0.05, when the piroxicam was incorporated in ME and in the combined system beta -cyclodextrin (B-CD)/ME, respectively, relative to the buffered piroxicam (42.2%). These results demonstrated that the ME induced prolonged effects, providing inhibition of the inflammation for 9 days after a single dose administration. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
The aim of this study was to develop multiparticulate therapeutic systems of alginate (AL) and chitosan (CS) containing triamcinolone (TC) to colonic drug delivery. Multiparticulate systems of AL-CS, prepared by a complex coacervation/ionotropic gelation method, were characterized for morphological and size aspects, swelling degree, encapsulation content and efficiency, in vitro release profile in different environments simulating the gastrointestinal tract (GIT) and in vivo gastrointestinal transit. The systems showed suitable morphological characteristics with particle diameters of approximately 1.6 mm. In simulated gastric environment, at pH 1.2, the capsules presented low degree of swelling and in vitro release of drug. A higher swelling degree was observed in simulated enteric environment, pH 7.5, followed by erosion. Practically all the drug was released after 6 h of in vitro assay. The in vivo analysis of gastrointestinal transit, carried out in rats, showed that the systems passed practically intact through the stomach and did not show the same profile of swelling observed in the in vitro tests. It was possible to verify the presence of capsules in the colonic region of GIT. The results indicate that AL-CS multiparticulate systems can be used as an adjuvant for the preparation of therapeutic systems to colonic delivery of drugs. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Paepalantine is an isocoumarin isolated from Paepalanthus vellozioides which showed antimicrobial activity in in vitro experiments. In the present study, paepalantine was tested for possible clastogenic and cytotoxic action. Cultures from different individuals were treated with paepalantine at concentrations of 20, 40 and 80 mu g/ml. The effect of isocoumarin was also tested in an in vivo assay using Wistar rat bone marrow cells. Paepalantine was administered intraperitoneally at concentrations of 6.25, 12.5 and 25 mg/kg body weight. Under these conditions paepalantine did not have a clastogenic effect, but was significantly cytotoxic in the in vitro and in vivo mammalian cell systems tested in the present work. (C) 1999 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
Cardiac structures, function, and myocardial contractility are affected by food restriction (FR). There are few experiments associating undernutrition with hypertension. The aim of the present study was to analyze the effects of FR on the cardiac response to hypertension in a genetic model of hypertension, the spontaneously hypertensive rat (SHR). Five-month-old SHR were fed a control or a calorie-restricted diet for 90 days. Global left ventricle (LV) systolic function was evaluated in vivo by transthoracic echocardiogram and myocardial contractility and diastolic function were assessed in vitro in an isovolumetrically beating isolated heart (Langendorff preparation). FR reduced LV systolic function (control (mean ± SD): 58.9 ± 8.2; FR: 50.8 ± 4.8%, N = 14, P < 0.05). Myocardial contractility was preserved when assessed by the +dP/dt (control: 3493 ± 379; FR: 3555 ± 211 mmHg/s, P > 0.05), and developed pressure (in vitro) at diastolic pressure of zero (control: 152 ± 16; FR: 149 ± 15 mmHg, N = 9, P > 0.05) and 25 mmHg (control: 155 ± 9; FR: 150 ± 10 mmHg, N = 9, P > 0.05). FR also induced eccentric ventricular remodeling, and reduced myocardial elasticity (control: 10.9 ± 1.6; FR: 9.2 ± 0.9%, N = 9, P < 0.05) and LV compliance (control: 82.6 ± 16.5; FR: 68.2 ± 9.1%, N = 9, P < 0.05). We conclude that FR causes systolic ventricular dysfunction without in vitro change in myocardial contractility and diastolic dysfunction probably due to a reduction in myocardial elasticity.
Resumo:
Background: Barrier materials as cellulose membranes are used for guided tissue repair. However, it is essential that the surrounding tissues accept the device. The present study histologically evaluated tissue reaction to a microbial cellulose membrane after subcutaneous implantation in mice. Furthermore, the interaction between mesenchymal stem cells and the biomaterial was studied in vitro to evaluate its ability to act as cellular scaffold for tissue engineering.Methods: Twenty-five Swiss Albino mice were used. A 10 x 10 mm cellulose membrane obtained through biosynthesis using Acetobacter xylinum bacteria was implanted into the lumbar subcutaneous tissue of each mouse. The mice were euthanatized at seven, 15, 30, 60, and 90 days, and the membrane and surrounding tissues were collected and examined by histology.Results: A mild inflammatory response without foreign body reaction was observed until 30 days post-surgery around the implanted membrane. Polarized microscopy revealed that the membrane remained intact at all evaluation points. Scanning electron microscopy of the cellulose membrane surface showed absence of pores. The in vitro evaluation of the interaction between cells and biomaterial was performed through viability staining analysis of the cells over the biomaterial, which showed that 95% of the mesenchymal stem cells aggregating to the cellulose membrane were alive and that 5% were necrotic. Scanning electron microscopy showed mesenchymal stem cells with normal morphology and attached to the cellulose membrane surface.Conclusion: The microbial cellulose membrane evaluated was found to be nonresorbable, induced a mild inflammatory response and may prove useful as a scaffold for mesenchymal stem cells.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJETIVO: avaliar a resistência de braquetes metálicos colados em dentes humanos com resina polimerizada com luz halógena por meio de ensaios mecânicos de cisalhamento. METODOLOGIA: para este estudo foram realizados ensaios in vivo com dinamômetro portátil digital e in vitro com máquina de ensaios mecânicos universal com e sem termociclagem, complementado pelo Índice de Adesivo Remanescente (IAR). Braquetes Edgewise Standard (Abzil) foram colados utilizando adesivo Transbond Plus Self Etching Primer (SEP) e Resina Transbond XT. Foram formados 3 grupos com 10 dentes em cada um deles. No GI os braquetes foram colados nos segundos pré-molares dos pacientes. Nos GII e GIII utilizaram-se primeiros pré-molares extraídos por motivos ortodônticos. Os ensaios mecânicos do GI foram realizados 24 horas após a polimerização diretamente na boca dos pacientes com dinamômetro portátil digital. No GII os corpos-de-prova foram armazenados em água destilada e levados à estufa a 37ºC durante 24 horas e, posteriormente, submetidos à termociclagem, com 1000 ciclos a 5 e 55ºC. No GIII os corpos-de-prova foram armazenados em água destilada em temperatura ambiente por 24 horas e posteriormente submetidos aos ensaios mecânicos. RESULTADOS: os valores médios da resistência ao cisalhamento em Megapascal foram de: GI = 4,39; GII = 7,11 e GIII = 7,35. Após a descolagem foram realizadas fotografias das áreas de colagem, tanto dos dentes submetidos a testes in vivo quanto in vitro e ampliadas 5x para facilitar a visualização. As imagens obtidas foram analisadas, classificadas de acordo com o IAR e, por meio de gráficos de dispersão, foi verificada a relação entre a resistência ao cisalhamento e este índice. CONCLUSÃO: a média dos ensaios mecânicos realizados in vivo foi estatisticamente menor em relação aos ensaios in vitro. Não houve diferenças na resistência ao cisalhamento in vitro entre o grupo termociclado e o não-termociclado. Não houve relação entre tensão de ruptura e tipo de falha.
Resumo:
Objectives. To evaluate the effects of current resin-modified glass-ionomer cements (RMGICs) applied on culture of cells or implanted into subcutaneous tissue of rats.Methods. Experiment 1 - Thirty round-shaped samples of every RMGICs: Rely X Luting Cement (RL), Vitremer (VM), and Vitrebond (VB) were placed into wells with 1.1 mL of culture medium (DMEM), and incubated for 24,48 or 72 h. The extracts from every sample were applied on the MDPC-23 cells. Fresh DMEM was used as control group. The MTT assay was carried out for mitochondrial respiration. Experiment 2 - Fifty-four polyethylene tubes filled with the experimental materials were implanted into the dorsal subcutaneous tissue of rats. At 7, 30, and 90 days the animals were killed and the biopsies were processed for histological evaluation.Results. Experiment 1 - Both time of elution and material significantly influenced cell respiratory activity. in general, the extracts obtained at 24 h were less cytotoxic than 48 and 72 h incubation. The cytotoxic effect of VM and RL were not statistically different (P < 0.05) for the 24-hour period. VB showed the highest cytotoxic effect. Experiment 2 - All RMGICs elicited at 7 days a moderate to intense inflammatory reaction which decreased over time. However, connective healing occurred for most of samples at 90-day evaluation.Significance. Glass-ionomer cements may cause noticeable inflammatory response when in direct contact to connective tissue. The toxic effects of this kind of soluble material depend on the amount of components released in the aqueous environment. (C) 2005 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.