34 resultados para diffusive gradients


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the selection of X chromosome of buffaloes sperm with Percoll gradients. The stock solution of Percoll was prepared in the proportion of 1:11 (1 part of Percoll:11 parts of a solution containing KCl 1M, NaH(2)PO(4) 0.1M, NaCl 1.5M and sodium HEPES 23.8 g/ml). In order to prepare 9 different gradients were added to the stocked Percoll the A solution (glicine-yolk extender) in the following proportions: 90, 80, 72, 65, 57, 49, 34 and 25%. A sample of 0.7 ml of the fresh semen was deposited at 2 ml of Percoll 80% for the sperm wash. The precipitate was put in tube with 0.7 ml of each gradient. Then, the precipitated was washed in TES solution by centrifugation (500xg for 10 minutes), and collected again and diluted in TES solution to be freeze. The presence of the F body in the spermatozoa was observed in 58.7 +/- 5.4% of the control group and in 41.2 +/- 5.4% of the treated group (p<0.01). This result showed an increment of 17.55 of male sperm in the Percoll's group. The reduction of the centrifugation force did not improve the percentage of X sperm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that a surface solitary wave governed by the Korteweg-de Vries equation can develop in a fluid acted upon by fluxes of heat and of a second diffusive element. This solitary wave appears as a manifestation of a hydrodynamical instability which sets in only when a certain relation involving the parameters of the system is satisfied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct exact solutions for a system of two coupled nonlinear partial differential equations describing the spatio-temporal dynamics of a predator-prey system where the prey per capita growth rate is subject to the Allee effect. Using the G'/G expansion method, we derive exact solutions to this model for two different wave speeds. For each wave velocity we report three different forms of solutions. We also discuss the biological relevance of the solutions obtained. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Savannas are characterized by sparsely distributed woody species within a continuous herbaceous cover, composed mainly by grasses and small eudicot herbs. This vegetation structure is variable across the landscape, with shifts from open grassland to savanna woodland determined by factors that control tree density. These shifts often appear coupled with environmental variations, such as topographic gradients. Here we investigated whether herbaceous and woody savanna species differ in their use of soil water along a topographic gradient of about 110 m, spanning several vegetation physiognomies generally associated with Neotropical savannas. We measured the delta H-2 and delta O-18 signatures of plants, soils, groundwater and rainfall, determining the depth of plant water uptake and examining variations in water uptake patterns along the gradient. We found that woody species use water from deeper soil layers compared to herbaceous species, regardless of their position in the topographic gradient. However, the presence of a shallow water table restricted plant water uptake to the superficial soil layers at lower portions of the gradient. We confirmed that woody and herbaceous species are plastic with respect to their water use strategy, which determines niche partitioning across topographic gradients. Abiotic factors such as groundwater level, affect water uptake patterns independently of plant growth form, reinforcing vegetation gradients by exerting divergent selective pressures across topographic gradients. (C) 2013 SAAB. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimation of tropospheric gradients in GNSS data processing is a well-known technique to improve positioning (e.g. Bar-Sever et al., 1998; Chen and Herring, 1997). More recently, several authors also focused on the estimation of such parameters for meteorological studies and demonstrated their potential benefits (e.g. Champollion et al., 2004). Today, they are routinely estimated by several global and regional GNSS analysis centres but they are still not yet used for operational meteorology.This paper discusses the physical meaning of tropospheric gradients estimated from GPS observations recorded in 2011 by 13 permanent stations located in Corsica Island (a French Island in the western part of Italy). Corsica Island is a particularly interesting location for such study as it presents a significant environmental contrast between the continent and the sea, as well as a steep topography.Therefore, we estimated Zenith Total Delay (ZTD) and tropospheric gradients using two software: GAMIT/GLOBK (GAMIT version 10.5) and GIPSY-OASIS II version 6.1. Our results are then compared to radiosonde observations and to the IGS final troposphere products. For all stations we found a good agreement between the ZWD estimated by the two software (the mean of the ZWD differences is 1 mm with a standard deviation of 6 mm) but the tropospheric gradients are in less good agreement (the mean of the gradient differences is 0.1 mm with a standard deviation of 0.7 mm), despite the differences in the processing strategy (double-differences for GAMIT/GLOBK versus zero-difference for GIPSY-OASIS).We also observe that gradient amplitudes are correlated with the seasonal behaviour of the humidity. Like ZWD estimates, they are larger in summer than in winter. Their directions are stable over the time but not correlated with the IWV anomaly observed by ERA-Interim. Tropospheric gradients observed at many sites always point to inland throughout the year. These preferred directions are almost opposite to the largest slope of the local topography as derived from the world Digital Elevation Model ASTER GDEM v2. These first results give a physical meaning to gradients but the origin of such directions need further investigations.