184 resultados para deconfinement phase transition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have performed dielectric and micro-Raman spectroscopy measurements in the 298 - 673 K temperature range in polycrystalline Pb0.50Sr0.50TiO3 thin films prepared by a soft chemical method. The phase transition have been investigated by dielectric measurements at various frequencies during the heating cycle. It was found that the temperature corresponding to the peak value of the dielectric constant is frequency-independent, indicating a non-relaxor ferroelectric behavior. However, the dielectric constant versus temperature curves associated with the ferroelectric to paraelectric phase transition showed a broad maximum peak at around 433 K. The observed behavior is explained in terms of a diffuse phase transition. The obtained Raman spectra indicate the presence of a local symmetry disorder, due to a higher strontium concentration in the host lattice. The monitoring of some modes, conducted in the Pb0.50Sr0.50TiO3 thin films, showed that the ferroelectric tetragonal phase undergoes a transition to the paraelectric cubic phase at around 423 K. However, the Raman activity did not disappear, as would be expected from a transition to the cubic paraelectric phase. The strong Raman spectrum observed for this cubic phase is indicative that a diffuse-type phase transition is taking place. This behavior is attributed to distortions of the perovskite structure, allowing the persistence of low-symmetry phase features in cubic phase high above the transition temperature. This result is in contrast to the forbidden first-order Raman spectrum, which would be expected from a cubic paraelectric phase, such as the one observed at high temperature in pure PbTiO3 perovskite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase transition from the non-polar a-phase to the polar beta-phase of poly(vinylidene fluoride) (PVDF) has been investigated using micro-Raman spectroscopy, which is advantageous because it is a nondestructive technique. Films of alpha-PVDF were subjected to stretching under controlled rates at 80 degrees C, while the transition to P-PVDF was monitored by the decrease in the Raman band at 794 cm(-1) characteristic of the a-phase, along with the concomitant increase in the 839 cm-1 band characteristic of the P-phase. The alpha ->beta transition in our PVDF samples could be achieved even for the sample stretched to twice (2 X -stretched) the initial length and it did not depend on the stretching rate in the range between 2.0 and 7.0 mm/min. These conclusions were corroborated by differential scanning calorimetry (DSC) and X-ray diffraction experiments for PVDF samples processed under the same conditions as in the Raman scattering measurements. Poling with negative corona discharge was found to affect the a-PVDF morphology, improving the Raman bands related to this crystalline phase. This effect is minimized for films stretched to higher ratios. Significantly, corona-induced effects could not be observed with the other experimental techniques, i.e., X-ray diffraction and infrared spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Co-doped alumina powders were synthesized by means of the polymeric precursor method to obtain ceramic pigments. The effect of different contents of Co2+ on phase transition gamma to alpha-Al2O3 and appearing of CoAl2O4 spinel were studied by means of X-ray diffraction. A partial phase diagram of the system CoAl2O3 was proposed from these data by means of determination of the percentages of these phases according to the calcining temperature. Critical particle size to phase transition was determined by means of calculations of crystallite size and determination of superficial area through the BET method. UV-vis spectroscopy of the samples allow to compare the band shift with the phase transition. Besides, a study of thermal stability and intensity of the blue coloration of the synthesized powders with the presence of cobalt in relation to the calcining temperature was accomplished and compared to the phase transition. The results show that the higher blue color intensity was obtained for the powders with Co-doped gamma-Al2O3 closest of phase transition to alpha-Al2O3 + CoAl2O4. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dielectric permittivity of Na0.80K0.20NbO3 ceramic was investigated by impedance spectroscopy. The dielectric characterization was performed from room temperature to 800 degreesC, in the frequency range 5 Hz-13 MHz. The bulk permittivity was derived by the variation of the imaginary part of the impedance as a function of reciprocal angular frequency. The permittivity values as a function of temperature showed two maxima. The first maximum is very similar at 200degreesC and the second one positioned at around 400degreesC, which was associated to Curie's temperature. The evolution of the complex permittivity as a function of frequency and temperature was investigated. At low frequency dispersion was investigated in terms of dielectric loss. The Na0.80K0.20NbO3 showed a dissipation factor between 5 and 40 over a frequency range from 1 to 10(2) kHz. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase transition from the non-polar a-phase to the polar beta-phase of poly(vinylidene fluoride) (PVDF) has been investigated using micro-Raman spectroscopy, which is advantageous for being a non-destructive technique. Films of alpha-PVDF were subjected to stretching under controlled rates and at 80 degrees C, the transition to beta-PVDF being monitored by the decrease in the Raman band at 794 cm(-1) characteristic of the a-phase, with the concomitant increase in the 839 cm(-1) band characteristic of the beta-phase. Poling with negative corona discharge was found to affect the alpha-PVDF morphology improving the Raman bands related to this crystalline phase. This effect is minimized for films stretched to higher ratios. Significantly, corona-induced effects could not be observed with the other experimental techniques, viz. X-ray diffraction and infrared spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the phase transition behavior of Pb0.76Ca0.24TiO3 thin films using Raman scattering and dielectric measurement techniques. We also have studied the leakage current conduction mechanism as a function of temperature for these thin films on platinized silicon substrates. A Pb0.76Ca0.24TiO3 thin film was prepared using a soft chemical process, called the polymeric precursor method. The results showed that the dependence of the dielectric constant upon the frequency does not reveal any relaxor behavior. However, a diffuse character-type phase transition was observed upon transformation from a cubic paraelectric phase to a tetragonal ferroelectric phase. The temperature dependency of Raman scattering spectra was investigated through the ferroelectric phase transition. The soft mode showed a marked dependence on temperature and its disappearance at about 598 K. on the other hand, Raman modes persist above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive above the phase transition temperature. The origin of these modes must be interpreted in terms of a local breakdown of cubic symmetry by some kind of disorder. The lack of a well-defined transition temperature suggested a diffuse-type phase transition. This result corroborate the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in the thin film. The leakage current density of the PCT24 thin film was studied at elevated temperatures, and the data were well fitted by the Schottky emission model. The Schottky barrier height of the PCT24 thin film was estimated to be 1.49 eV. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dielectric and Raman scattering experiments were performed on polycrystalline Pb1-xCaxTiO3 thin films (x=0.10, 0.20, 0.30, and 0.40) as a function of temperature. The results showed no shift in the dielectric constant (K) maxima, a broadening with frequency, and a linear dependence of the transition temperature on increasing Ca2+ content. on the other hand, a diffuse-type phase transition was observed upon transforming from the cubic paraelectric to the tetragonal ferroelectric phase in all thin films. The temperature dependence of Raman scattering spectra was investigated through the ferroelectric phase transition. The temperature dependence of the phonon frequencies was used to characterize the phase transitions. Raman modes persisted above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of a breakdown of the local cubic symmetry due to chemical disorder. The lack of a well-defined transition temperature and the presence of broad bands in some temperature interval above the FE-PE phase transition temperature suggested a diffuse-type phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in these thin films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed room temperature micro-Raman scattering, X-ray diffraction, atomic force microscopy and specular reflectance infrared Fourier transform spectroscopy studies were carried out on soft chemical by processed Pb1-xBaxTiO3 thin films. The micro-Raman spectra pointed the existence of a stable tetragonal ferroelectric phase in the entire composition range (0 < x <= 1). The infrared reflectance spectra showed that the frequency of several peaks decreases as the Ba2+ concentration increases. These features are correlated to a decrease in the tetragonal distortion of the TiO6 octahedra as the Ba2+ concentration increases. Furthermore, as x increases from 0.70 to 1.0, the Raman spectrum shows an evolution towards the well-known Raman spectrum of the tetragonal BaTiO3. Therefore, we demonstrated that the combination of solid solution PbTiO3-BaTiO3 with a grain size in the order of 30-40 nm supports the tetragonal ferroelectric phase at room temperature. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dielectric and Raman scattering experiments were performed on polycrystalline Pb(1-x)Ba(x)TiO(3) thin films (x=0.40 and 0.60) as a function of temperature. The dielectric study on single phase compositions revealed that a diffuse-type phase transition occurred upon transformation of the cubic paraelectric to the tetragonal ferroelectric phase in all thin films, which showed a broadening of the dielectric peak. Diffusivity was found to increase with increasing barium contents in the composition range under study. In addition, the temperature dependence of Raman scattering spectra was investigated through the ferroelectric phase transition. The temperature dependence of the phonon frequencies was used to characterize the phase transitions. Raman modes persisted above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted as a breakdown of the local cubic symmetry by chemical disorder. The lack of a well-defined transition temperature and the presence of broadbands in some temperature intervals above the paraferroelectric phase transition temperature suggest a diffuse-type phase transition. (C) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the effects of a repulsive three-body interaction on a system of trapped ultracold atoms in a Bose-Einstein condensed state. The stationary solutions of the corresponding s-wave nonlinear Schrödinger equation suggest a scenario of first-order liquid-gas phase transition in the condensed state up to a critical strength of the effective three-body force. The time evolution of the condensate with feeding process and three-body recombination losses has a different characteristic pattern. Also, the decay time of the dense (liquid) phase is longer than expected due to strong oscillations of the mean-squared radius.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase transition from the non-polar α-phase to the polar β-phase of poly(vinylidene fluoride) (PVDF) has been investigated using micro-Raman spectroscopy, which is advantageous for being a non-destructive technique. Films of α-PVDF were subjected to stretching under controlled rates and at 80°C, the transition to β-PVDF being monitored by the decrease in the Raman band at 794 cm-1 characteristic of the α-phase, with the concomitant increase in the 839 cm-1 band characteristic of the β-phase. Poling with negative corona discharge was found to affect the a-PVDF morphology improving the Raman bands related to this crystalline phase. This effect is minimized for films stretched to higher ratios. Significantly, corona-induced effects could not be observed with the other experimental techniques, viz. X-ray diffraction and infrared spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma electrolytic oxidation (PEO) is a coating procedure that utilises anodic oxidation in aqueous electrolytes above the dielectric breakdown voltage to produce oxide coatings that have specific properties. These conditions facilitate oxide formation under localised high temperatures and pressures that originate from short-lived microdischarges at sites over the metal surface and have fast oxide volume expansion. Anodic ZrO2 films were prepared by subjecting metallic zirconium to PEO in acid solutions (H2C 2O4 and H3PO4) using a galvanostatic DC regime. The ZrO2 microstructure was investigated in films that were prepared at different charge densities. During the anodic breakdown, an important change in the amplitude of the voltage oscillations at a specific charge density was observed (i.e., the transition charge density (Q T)). We verified that this transition charge is a monotonic function of both the current density and temperature applied during the anodisation, which indicated that Q T is an intrinsic response of this system. The oxide morphology and microstructure were characterised using SEM and X-ray diffraction experiments (XRD) techniques. X-ray diffraction analysis revealed that the change in voltage oscillation was correlated with oxide microstructure changes during the breakdown process. © 2012 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study two different spin-boson models. Such models are generalizations of the Dicke model, it means they describe systems of N identical two-level atoms coupled to a single-mode quantized bosonic field, assuming the rotating wave approximation. In the first model, we consider the wavelength of the bosonic field to be of the order of the linear dimension of the material composed of the atoms, therefore we consider the spatial sinusoidal form of the bosonic field. The second model is the Thompson model, where we consider the presence of phonons in the material composed of the atoms. We study finite temperature properties of the models using the path integral approach and functional methods. In the thermodynamic limit, N→∞, the systems exhibit phase transitions from normal to superradiant phase at some critical values of temperature and coupling constant. We find the asymptotic behavior of the partition functions and the collective spectrums of the systems in the normal and the superradiant phases. We observe that the collective spectrums have zero energy values in the superradiant phases, corresponding to the Goldstone mode associated to the continuous symmetry breaking of the models. Our analysis and results are valid in the limit of zero temperature β→∞, where the models exhibit quantum phase transitions. © 2013 Elsevier B.V. All rights reserved.