42 resultados para databases and data mining


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-relational data mining enables pattern mining from multiple tables. The existing multi-relational mining association rules algorithms are not able to process large volumes of data, because the amount of memory required exceeds the amount available. The proposed algorithm MRRadix presents a framework that promotes the optimization of memory usage. It also uses the concept of partitioning to handle large volumes of data. The original contribution of this proposal is enable a superior performance when compared to other related algorithms and moreover successfully concludes the task of mining association rules in large databases, bypass the problem of available memory. One of the tests showed that the MR-Radix presents fourteen times less memory usage than the GFP-growth. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data mining of Eucalyptus ESTs genome finds four clusters (EGCEST2257E11.g, EGBGRT3213F11.g, and EGCCFB1223H11.g) from highly conservative 14-3-3 protein family which modulates a wide variety of cellular processes. Multiple alignments were built from twenty four sequences of 14-3-3 proteins searched into the GenBank databases and into the four pools of Eucalyptus genome programs. The alignment has shown two regions highly conservative on the sequences corresponding to the motifs of protein phosphorylation and nine highly conservative regions on the sequence corresponding to the linkage regions of alpha helices structure based on three dimensional of dimer functional structure. The differences of amino acid into the structural and functional domains of 14-3-3 plant protein were identified and can explain the functional diversity of different isoforms. The phylogenic protein trees were built by the maximum parsimony and neighborjoining procedures of Clustal X alignments and PAUP software for phylogenic analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a peer-to-peer network, the nodes interact with each other by sharing resources, services and information. Many applications have been developed using such networks, being a class of such applications are peer-to-peer databases. The peer-to-peer databases systems allow the sharing of unstructured data, being able to integrate data from several sources, without the need of large investments, because they are used existing repositories. However, the high flexibility and dynamicity of networks the network, as well as the absence of a centralized management of information, becomes complex the process of locating information among various participants in the network. In this context, this paper presents original contributions by a proposed architecture for a routing system that uses the Ant Colony algorithm to optimize the search for desired information supported by ontologies to add semantics to shared data, enabling integration among heterogeneous databases and the while seeking to reduce the message traffic on the network without causing losses in the amount of responses, confirmed by the improve of 22.5% in this amount. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multi-relational Data Mining approach has emerged as alternative to the analysis of structured data, such as relational databases. Unlike traditional algorithms, the multi-relational proposals allow mining directly multiple tables, avoiding the costly join operations. In this paper, is presented a comparative study involving the traditional Patricia Mine algorithm and its corresponding multi-relational proposed, MR-Radix in order to evaluate the performance of two approaches for mining association rules are used for relational databases. This study presents two original contributions: the proposition of an algorithm multi-relational MR-Radix, which is efficient for use in relational databases, both in terms of execution time and in relation to memory usage and the presentation of the empirical approach multirelational advantage in performance over several tables, which avoids the costly join operations from multiple tables. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Leptospirosis is an important zoonotic disease associated with poor areas of urban settings of developing countries and early diagnosis and prompt treatment may prevent disease. Although rodents are reportedly considered the main reservoirs of leptospirosis, dogs may develop the disease, may become asymptomatic carriers and may be used as sentinels for disease epidemiology. The use of Geographical Information Systems (GIS) combined with spatial analysis techniques allows the mapping of the disease and the identification and assessment of health risk factors. Besides the use of GIS and spatial analysis, the technique of data mining, decision tree, can provide a great potential to find a pattern in the behavior of the variables that determine the occurrence of leptospirosis. The objective of the present study was to apply Geographical Information Systems and data prospection (decision tree) to evaluate the risk factors for canine leptospirosis in an area of Curitiba, PR.Materials, Methods & Results: The present study was performed on the Vila Pantanal, a urban poor community in the city of Curitiba. A total of 287 dog blood samples were randomly obtained house-by-house in a two-day sampling on January 2010. In addition, a questionnaire was applied to owners at the time of sampling. Geographical coordinates related to each household of tested dog were obtained using a Global Positioning System (GPS) for mapping the spatial distribution of reagent and non-reagent dogs to leptospirosis. For the decision tree, risk factors included results of microagglutination test (MAT) from the serum of dogs, previous disease on the household, contact with rats or other dogs, dog breed, outdoors access, feeding, trash around house or backyard, open sewer proximity and flooding. A total of 189 samples (about 2/3 of overall samples) were randomly selected for the training file and consequent decision rules. The remained 98 samples were used for the testing file. The seroprevalence showed a pattern of spatial distribution that involved all the Pantanal area, without agglomeration of reagent animals. In relation to data mining, from 189 samples used in decision tree, a total of 165 (87.3%) animal samples were correctly classified, generating a Kappa index of 0.413. A total of 154 out of 159 (96.8%) samples were considered non-reagent and were correctly classified and only 5/159 (3.2%) were wrongly identified. on the other hand, only 11 (36.7%) reagent samples were correctly classified, with 19 (63.3%) samples failing diagnosis.Discussion: The spatial distribution that involved all the Pantanal area showed that all the animals in the area are at risk of contamination by Leptospira spp. Although most samples had been classified correctly by the decision tree, a degree of difficulty of separability related to seropositive animals was observed, with only 36.7% of the samples classified correctly. This can occur due to the fact of seronegative animals number is superior to the number of seropositive ones, taking the differences in the pattern of variable behavior. The data mining helped to evaluate the most important risk factors for leptospirosis in an urban poor community of Curitiba. The variables selected by decision tree reflected the important factors about the existence of the disease (default of sewer, presence of rats and rubbish and dogs with free access to street). The analyses showed the multifactorial character of the epidemiology of canine leptospirosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whereas genome sequencing defines the genetic potential of an organism, transcript sequencing defines the utilization of this potential and links the genome with most areas of biology. To exploit the information within the human genome in the fight against cancer, we have deposited some two million expressed sequence tags (ESTs) from human tumors and their corresponding normal tissues in the public databases. The data currently define approximate to23,500 genes, of which only approximate to1,250 are still represented only by ESTs. Examination of the EST coverage of known cancer-related (CR) genes reveals that <1% do not have corresponding ESTs, indicating that the representation of genes associated with commonly studied tumors is high. The careful recording of the origin of all ESTs we have produced has enabled detailed definition of where the genes they represent are expressed in the human body. More than 100,000 ESTs are available for seven tissues, indicating a surprising variability of gene usage that has led to the discovery of a significant number of genes with restricted expression, and that may thus be therapeutically useful. The ESTs also reveal novel nonsynonymous germline variants (although the one-pass nature of the data necessitates careful validation) and many alternatively spliced transcripts. Although widely exploited by the scientific community, vindicating our totally open source policy, the EST data generated still provide extensive information that remains to be systematically explored, and that may further facilitate progress toward both the understanding and treatment of human cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a new modeling method, support vector regression (SVR) has been regarded as the state-of-the-art technique for regression and approximation. In this study, the SVR models had been introduced and developed to predict body and carcass-related characteristics of 2 strains of broiler chicken. To evaluate the prediction ability of SVR models, we compared their performance with that of neural network (NN) models. Evaluation of the prediction accuracy of models was based on the R-2, MS error, and bias. The variables of interest as model output were BW, empty BW, carcass, breast, drumstick, thigh, and wing weight in 2 strains of Ross and Cobb chickens based on intake dietary nutrients, including ME (kcal/bird per week), CP, TSAA, and Lys, all as grams per bird per week. A data set composed of 64 measurements taken from each strain were used for this analysis, where 44 data lines were used for model training, whereas the remaining 20 lines were used to test the created models. The results of this study revealed that it is possible to satisfactorily estimate the BW and carcass parts of the broiler chickens via their dietary nutrient intake. Through statistical criteria used to evaluate the performance of the SVR and NN models, the overall results demonstrate that the discussed models can be effective for accurate prediction of the body and carcass-related characteristics investigated here. However, the SVR method achieved better accuracy and generalization than the NN method. This indicates that the new data mining technique (SVR model) can be used as an alternative modeling tool for NN models. However, further reevaluation of this algorithm in the future is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a technique to share the data stored in an object-oriented database aimed at designing environments. This technique shares data between two related databases, called the Original and Product databases, and is composed of three processes: data separation, evolution and integration. Whenever a block of data needs to be shared, it is spread into both databases, resulting in a block on the original database, and another into the Product database, with special links between them controlled by the Object Manager. These blocks do not need to be maintained identical during the evolution phase of the sharing process. Six types of links were defined, and by choosing one, the designer control the evolution and reintegration of the block in both databases. This process uses the composite object concept as the unit of control. The presented concepts can be applied to any data model with support to composite objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a data mining environment for knowledge discovery in bioinformatics applications. The system has a generic kernel that implements the mining functions to be applied to input primary databases, with a warehouse architecture, of biomedical information. Both supervised and unsupervised classification can be implemented within the kernel and applied to data extracted from the primary database, with the results being suitably stored in a complex object database for knowledge discovery. The kernel also includes a specific high-performance library that allows designing and applying the mining functions in parallel machines. The experimental results obtained by the application of the kernel functions are reported. © 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hemoglobinopathies were included in the Brazilian Neonatal Screening Program on June 6, 2001. Automated high-performance liquid chromatography (HPLC) was indicated as one of the diagnostic methods. The amount of information generated by these systems is immense, and the behavior of groups cannot always be observed in individual analyses. Three-dimensional (3-D) visualization techniques can be applied to extract this information, for extracting patterns, trends or relations from the results stored in databases. We applied the 3-D visualization tool to analyze patterns in the results of hemoglobinopathy based on neonatal diagnosis by HPLC. The laboratory results of 2520 newborn analyses carried out in 2001 and 2002 were used. The Fast, F1, F and A peaks, which were detected by the analytical system, were chosen as attributes for mapping. To establish a behavior pattern, the results were classified into groups according to hemoglobin phenotype: normal (N = 2169), variant (N = 73) and thalassemia (N = 279). 3-D visualization was made with the FastMap DB tool; there were two distribution patterns in the normal group, due to variation in the amplitude of the values obtained by HPLC for the F1 window. It allowed separation of the samples with normal Hb from those with alpha thalassemia, based on a significant difference (P > 0.05) between the mean values of the Fast and A peaks, demonstrating the need for better evaluation of chromatograms; this method could be used to help diagnose alpha thalassemia in newborns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aiming to ensure greater reliability and consistency of data stored in the database, the data cleaning stage is set early in the process of Knowledge Discovery in Databases (KDD) and is responsible for eliminating problems and adjust the data for the later stages, especially for the stage of data mining. Such problems occur in the instance level and schema, namely, missing values, null values, duplicate tuples, values outside the domain, among others. Several algorithms were developed to perform the cleaning step in databases, some of them were developed specifically to work with the phonetics of words, since a word can be written in different ways. Within this perspective, this work presents as original contribution an optimization of algorithm for the detection of duplicate tuples in databases through phonetic based on multithreading without the need for trained data, as well as an independent environment of language to be supported for this. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identification and classification of overlapping nodes in networks are important topics in data mining. In this paper, a network-based (graph-based) semi-supervised learning method is proposed. It is based on competition and cooperation among walking particles in a network to uncover overlapping nodes by generating continuous-valued outputs (soft labels), corresponding to the levels of membership from the nodes to each of the communities. Moreover, the proposed method can be applied to detect overlapping data items in a data set of general form, such as a vector-based data set, once it is transformed to a network. Usually, label propagation involves risks of error amplification. In order to avoid this problem, the proposed method offers a mechanism to identify outliers among the labeled data items, and consequently prevents error propagation from such outliers. Computer simulations carried out for synthetic and real-world data sets provide a numeric quantification of the performance of the method. © 2012 Springer-Verlag.