33 resultados para cytoplasmic inheritance
Resumo:
Anti-neutrophil cytoplasmic antibodies (ANCA) are autoantibodies against enzymes present in primary granules of neutrophils and lysosomes of monocytes detected in systemic vasculitis and in other diseases, including infections, ANCA are markers of active Wegener granulomatosis, which presents some anatomo-pathologic and immune response features similar to those of leprosy. Thus, we raised the hypothesis that ANCA may be present in leprosy as markers specifically linked to the presence of vasculitis. The aim of this study was to determine the presence of ANCA in leprosy and its correlation with the clinical forms of the disease. Sera from 60 normal individuals and from 59 patients with different clinical forms of leprosy were studied. The patients were also allocated into reactional and nonreactional groups. By indirect immunofluorescence, ANCA were positive, an atypical pattern A-ANCA, in 28.8% of the patient sera. A-ANCA predominated, although not significantly (p >0,05), in the reactional groups (37.9% vs 20.0%), and in those at the lepromatous pole (41.6% vs 20.0%). There was no correlation between ANCA positivity and either disease duration, disease activity, or therapeutic regimen (p >0.05), An interesting finding was the correlation between ANCA and gender: 94.1% of ANCA-positive patients were males (p <0.01), a feature that so far has not been reported in ANCA-related diseases and for which there is no explanation at the moment. By ELISA, the sera of the lepromatous leprosy patients did not show activity against either PR3, MPO, HLE, the most common ANCA antigens. Because A-ANCA are nonspecific, this finding requires further investigation for the determination of the responsible antigen(s), in conclusion, A-ANCA are present in 28.8% of leprosy patients but are not related to vasculitis in the erythema nodosum leprosum reaction and are not a marker of a specific clinical form.
Resumo:
Midgut cells from the honey bee, Apis mellifera, and the stingless bees Scaptotrigona postica and Melipona quadrifasciata anthidioides were examined ultrastructurally and histochemically. Several types of protrusions were evident in the apical surface of the midgut cells. Large apical protrusions formed by the whole apical surface of the cell, whose content had a homogeneous cytoplasmic matrix devoid of organelles and with a different electron density from the subjacent cytoplasm. These protrusions can be cast out to the midgut lumen. A second type of large apical protrusion was produced between the cell microvilli, presenting many ribosomes and polyribosomes. In addition to these large protrusions two other kinds of small ones were observed. One type crowned the cell apex forming small spheres with irregular contours near the cells, and increasing in size further away. The other type was characterized by the microvilli swelling with an electron-lucent content. The Gomori acid phosphatase reaction was positive at the cell apex, in the pinched off protrusions and in the microvilli. These results are discussed in relation to the possible role of cell protrusions in secretory mechanisms.
Resumo:
The 3-isobutyl-1-methylxanthine (IBMX) is able to prevent resumption of meiosis by maintaining elevated cyclic AMP (cAMP) concentrations in the oocyte, and roscovitine, a purine known to specifically inhibit MPF kinase activity, maintains bovine oocytes at the germinal vesicle (GV) stage. The present study was conducted to analyze whether cytoplasmic maturation (examined by the pattern of cortical granule (CG) distribution) of bovine oocytes is improved during meiotic arrest with IBMX and roscovitine. Oocytes were matured in vitro in a 10% Knockout(SR) supplemented TCM-199 medium (Control) with either 0.5 mM IBMX or 25 mu M roscovitine (ROSC). Oocytes were stained with fluorescein isothiocyanate conjugated Lens culinaris agglutinin (FITC-LCA) for CG evaluation and with Hoechst 33342 for nuclear stage assessment. At 16 h of culture, the percentage of oocytes remaining in the GV stage was higher (P < 0.05) in the ROSC group (32.41%) compared with the Control and IBMX groups (8.61% and 9.73%, respectively). At 24h of culture, progression of meiosis to M II stage was retarded (P < 0.05) in the ROSC group (24.05%) compared to the Control (60.20%), whereas the IBMX group (33.88%) showed no significant difference to the other two groups. At 16h of maturation, the proportion of oocytes with CG in clusters (immature cytoplasm) was similar between the groups, as was the percentage of peripheral CG (mature) at 24h of maturation. The results of the present study demonstrated that the meiotic inhibitors IBMX and roscovitine delay the progression of nuclear maturation without affecting cytoplasmic maturation, assessed by the analysis of CG repositioning. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The complete nucleotide sequence of the genomic RNA 1 (8745 nt) and RNA 2 (4986 nt) of Citrus leprosis virus cytoplasmic type (CiLV-C) was determined using cloned cDNA. RNA 1 contains two open reading frames (ORFs), which correspond to 286 and 29 kDa proteins. The 286 kDa protein is a polyprotein putatively involved in virus replication, which contains four conserved domains: methyltransferase, protease, helicase and polymerase. RNA 2 contains four ORFs corresponding to 15, 61, 32 and 24 kDa proteins, respectively. The 32 kDa protein is apparently involved in cell-to-cell movement of the virus, but none of the other putative proteins exhibit any conserved domain. The 5' regions of the two genomic RNAs contain a 'cap' structure and poly(A) tails were identified in the 3'-terminals. Sequence analyses and searches for structural and non-structural protein similarities revealed conserved domains with members of the genera Furovirus, Bromovirus, Tobravirus and Tobamovirus, although phylogenetic analyses strongly suggest that CiLV-C is a member of a distinct, novel virus genus and family, and definitely demonstrate that it does not belong to the family Rhabdoviridae, as previously proposed. Based on these results it was proposed that Citrus leprosis virus be considered as the type member of a new genus of viruses, Cilevirus.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
During mitotic and meiotic divisions in Dermatobia hominis spermatogenesis, the germ cells stay interlinked by cytoplasm, bridges as a result of incomplete cytokinesis. By the end of each division, cytoplasmic bridges flow to the center of the cyst, forming a complex, called the fusoma. During meiotic prophase I, spermatocytes I present desmosome-like junctions and meiotic cytoplasmic bridges. At the beginning of spermiogenesis, the fusoma moves to the future caudal end of the cyst, and at this time the early spermatids are linked by desmosome-like junctions. Throughout spermiogensis, new and sometimes broad cytoplasmic bridges are formed among spermatids at times making them share cytoplasm. In this case the individualization of cells is assured by the presence of smooth cisternae that outline then structures The more differentiated spermatids have in addition to narrow cytoplasmic bridges, plasmic membranes junctions. By the end of spermiogenesis the excess cytoplasmic mass is eliminated leading to spermatid individualization. Desmosome-like junctions of spermatocytes I and early spermatids appear during the fusoma readjustment and segregations; on the other hand, plasmic membrane junctions appear in differentiating spermatids and are eliminated along with the cytoplasmic excess. These circumstances suggest that belt desmosome-like and plasmic membrane junctions are involved in the maintenance of the relative positions of male germ cells in D. hominis while they are inside the cysts. © 1996 Wiley-Liss, Inc.
Resumo:
Due to the exclusively maternal inheritance of mitochondria, mitochondrial genotypes can be coupled to a particular nuclear genotype by continuous mating of founder females and their female offspring to males of the desired nuclear genotype. However, backcrossing is a gradual procedure that, apart from being lengthy, cannot ascertain that genetic and epigenetic changes will modify the original nuclear genotype. Animal cloning by nuclear transfer using host ooplasm carrying polymorphic mitochondrial genomes allows, among other biotechnology applications, the coupling of nuclear and mitochondrial genotypes of diverse origin within a single generation. Previous attempts to use Bos taurus oocytes as hosts to transfer nuclei from unrelated species led to the development to the blastocyst stage but none supported gestation to term. Our aim in this study was to determine whether B. taurus oocytes support development of nuclei from the closely related B. indicus cattle and to examine the fate of their mitochondrial genotypes throughout development. We show that indicus:taurus reconstructed oocytes develop to the blastocyst stage and produce live offspring after transfer to surrogate cows. We also demonstrate that, in reconstructed embryos, donor cell-derived mitochondria undergo a stringent genetic drift during early development leading, in most cases, to a reduction or complete elimination of B. indicus mtDNA. These results demonstrate that cross-subspecies animal cloning is a viable approach both for matching diverse nuclear and cytoplasmic genes to create novel breeds of cattle and for rescuing closely related endangered cattle.