25 resultados para critical velocity
Resumo:
The perceived exertion has been a target of several investigations, many times with association with objective physiological indicators in exercise. Recently, the identification of the perceived exertion threshold (PET) was proposed in the water running, which presented no difference in relation to the critical velocity. Theoretically, both parameters would be indicators of the maximum steady state of variables such as V̇O2 and blood lactate. The objective of this work was to verify the coincidence between PET, critical power (PCrit) and an indicator of maximum V̇O2 steady state (PCrit') in cycle ergometer. Eight male participants were submitted to progressive effort test in order to determine V̇O2peak (46.7 ± 8.5 ml/kg/min) and to four rectangular tests until exhaustion for the estimation of the critical power model parameters, PET and PCrit'. The hyperbolic relation between mechanical power and time spent for the V̇O2peak to be reached in each test was used for the PCrit' estimation, considered as the asymptote in the power axis, and the portion of the anaerobic work capacity (CTAnaer) depleted up to the establishment of the V̇O2peak (CTAnaer'). In order to identify PET, the straight lines angular coefficients of the perceived exertion in time (ordinate) and the powers used (abscissa) were adjusted to a linear function that provided a point in the power axis in which the perceived exertion would be kept indefinitely stable. The parameters PCrit and CTAnaer were estimated by means of the power-time non-linear equation. In order to compare the estimations of PET, PCrit and PCrit', the analysis of variance ANOVA for repeated measurements was employed, and the associations were established through the Pearson correlation. CTAnaer and CTAnaer' were compared through the t test. PET (180 W ± 61 W), PCrit (174 W ± 43 W) and PCrit' (176 W ± 48 W) were not significantly different and the correlations were of 0.92-0.98. CTAnaer' (14,080 ± 5,219 J) was lower than CTAnaer (22,093 ± 9,042 J). One concludes that the PET predicts the intensity of PCrit and PCrit' with accuracy.
Resumo:
A simple and applicable method for non-exhaustive aerobic evaluation in running rats is described. Wistar rats were submitted to running test at different velocities (10, 15, 20, 25 m/min) with 48 h recovery among them. At each velocity, the rats ran two bouts of 5 min with 2 min of rest between bouts. Blood samples were collected at the end of each bout for lactate determination. For each intensity, delta lactate was calculated and using deltas obtained by four tests, an individual linear interpolation was plotted. The y-intercept of linear interpolation was the null delta lactate equivalent to the critical velocity (CV). To verify the lactate stabilization at CV, the animals were submitted to 25 min of continuous exercise (15, 20, 25 m/min), with blood collection every 5 min. The estimated CV was 16.6±0.7 m/min, with significant linear regressions (R=0.90±0.03). The rats presented maximal lactate steady state (MLSS) at 3.9±0.4 mmol/L, at 20 m/min. The CV was less than MLSS but significantly correlated with this parameter (r=0.78). This non-exhaustive test seems to be valid for the aerobic evaluation of sedentary rats and this protocol underestimates the MLSS in 20%. This test seems to be the interesting method for the evaluation of rats submitted to acute exercise or physical training.
Resumo:
Pós-graduação em Ciências da Motricidade - IBRC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciências da Motricidade - IBRC
Resumo:
Twenty-four masters swimmers participated in the study (42.0 ± 7.4 years, 1.74 ± 0.09 m, 74.8 ± 14.1 kg). Countermovement jump (CMJ) and 3 kg medicinal ball throwing (BM) were performed. At a 25 m swimming pool, each subject completed a maximal 50 m front crawl swim with in water start, 25 and 50 m performances (T25, T50) were recorded. Anaerobic critical velocity (AnCV) was determined by the slope of the distance-time relationship (Dd-t) in the two swimming distances. T25 and T50 (respectively 19.0 ± 2.7-sec and 38.8 ± 6.4-sec) were correlated with CMJ (27.2 ± 5.0 m) (respectively, r = -0.78 and -0.73, p < 0.01), and BM (4.3 ± 1.0 m) (r = -0.68 and - 0.58, p < 0.01). AnCV25,50 (1.31 ± 0.23 m.s-1 ) was correlated with T25 (r = -0.92, p < 0.01 ) and T50 (r = -0.98, p < 0.01). The strength parameters turn out to be important in aquatic performance in masters swimmers and AnCV may be relevant in the training of masters swimmers.
Resumo:
Our objective was to analyze the effect of gender on the relationship between stroke rates corresponding to critical speed (SRCS) and maximal speed of 30 min (SRS30) in young swimmers. Twenty two males (GM1) (Age = 15.4 ± 2.1 yr., Body mass = 63.7 ± 12.9 kg, Stature = 1.73 ± 0.09 m) and fourteen female (GF) swimmers (Age = 15.1 ± 1.6 yr., Body mass = 58.3 ± 8.8 kg, Stature = 1.65 ± 0.06 m) were studied. A subset of males (GM2) was matched to the GF by their velocity for a 30 min swim (S30). The critical speed (CS) was determined through the slope of the linear regression line between the distances (200 and 400 m) and participant's respective times. CS was significantly higher than S30 in males (GM1 - 1.25 and 1.16 and GM2 - 1.21 and 1.12 m·s-1) and females (GF - 1.15 and 1.11 m·s-1). There was no significant difference between SRCS and SRS30 in males (GM1 - 34.16 and 32.32 and GM2 - 34.67 and 32.46 cycle·s-1, respectively) and females (GF - 34.18 and 33.67 cycle·s-1-1, respectively). There was a significant correlation between CS and S30 (GM1 - r = 0.89, GF - r = 0.94 and GM2 - r = 0.90) and between SRCS and SRS30 (GM1 - r = 0.89, GF - r = 0.80 and GM2 - r = 0.88). Thus, the relationship between SRCS and SRS30 is not influenced by gender, in swimmers with similar and different aerobic capacity levels. ©Journal of Sports Science and Medicine (2007).
Resumo:
Increasing air movement over poultry by using fans (ventilation) has become an accepted means of reducing environmental heat stress over the last several years. The purpose of this study was to evaluate the effect of air velocity and exposure time to ventilation on body surface and rectal temperature of broiler chickens. Male broiler chickens aged 36-42 days were placed in individual wire cages and exposed to five different air velocities (5.7, 4.2, 3.1, 2.4, or 1.8 m/sec). Throughout the experiment head, back, leg, and rectal temperatures were monitored every 10 min during a 30-min period for each air velocity. The data showed that exposure time to the wind affected (P<.05) leg and body temperature, with a rapid reduction being observed during the first 10 min. There was a reduction in leg temperature with air velocity of 2 m/sec; however, air velocity lower than 4.5 m/sec was not effective in decreasing head and back temperature. The results suggest that air velocity of 2 m/sec, in air temperature of 29 degrees C, improves heat loss in the birds. The data also indicate that exposure time to ventilation seems to be a critical point in the maintenance of bird thermal homeostasis.
Resumo:
This study analyzed the relationship between critical speed (CS) and maximal speed for 30 min (S30) in swimmers of ages 10-15 years. Fifty-one swimmers were divided by chronological age (10-12 years = G10-12, 13-15 years = G13-15), sexual maturation (pubic hair stages; P1-P3 and P4-P5), and gender (M = boys, F = girls). The CS was determined through the slope of the linear regression between the distances (100, 200, and 400 m) and participants' respective times. CS and S30 were similar in the younger (G10-12M = 0.97 vs. 0.97 m/s, and G10-12F = 1.01 vs. 0.97 m/s, respectively), and older swimmers (G13-15M = 1.10 vs. 1.07 m/s and G13-15F = 0.93 vs. 0.91 m/s, respectively). In conclusion, the CS can be used in young swimmers for the evaluation of aerobic capacity, independent of gender and age. © 2005 Human Kinetics, Inc.