36 resultados para cost-informed process execution
Resumo:
Laboratory profile of young ovines was studied in order to evaluate and compare their antiserum production from natural and Cobalt-60 irradiated Crotalus durissus terrificus (C.d.t.) venoms. The parameters analyzed included complete blood count, and urea, creatinine, aspartate aminotransferase, total proteins, albumin and globulin serum measurements. Three groups of six animals each were used. Group 1 (G1) received natural C.d.t. venom; Group 2 (G2) received irradiated C.d.t. venom; and Group 3 (G3) was used as control and did not receive venom, only adjuvants, using seven venom inoculations. During the experimental period, animals were fortnightly weighed. According to clinical and weight evaluation, sheep in post-weaning phase showed no changes in their physiological profiles but had excellent weight gain. The parameters analyzed were not statistically different (p<5%) among the groups tested. The hyperimmunization process was successfully accomplished with the production of specific antibodies against Crotalus durissus terrificus venom. Results bring a new possibility of utilizing ovines in the commercial production of anticrotalic serum, which may be used to treat human and animal envenomation. Its production cost may be reduced by subsequent use of hyperimmunized sheep for human consumption.
Resumo:
Nowadays, many investments have been made in the area of superconductor materials, with the aim to improve their potential technological applications. Applications on the energy transport using cables, to get high resolution images in the medicine use high magnetic fields, high speed signals use superconductor devices all of them are in crescent evidence and they are showing that the future is coming and next for this new kind of materials. Obviously that everything of this is possible due to the increasing of research with new materials, where the synthesis, characterization and applications are of the mainly objective of these researches. The production of cable for the energy transport has been in advanced stage as the bulks production is too. However, the film production that to aim at the electronic devices area is not as developed or it still need expensive investments. Thinking about that, we are developing a research where we may increase the relation of cost/benefits. Thereby, we are applying the polymeric precursors method to obtain films that will be used in the built of electronic devices. Thin films (mono and multilayers, on crystalline or metallic substrates, controlled thickness) of the BSCCO system have been obtained from dip coating deposition process with excellent results in terms of preferential orientation, controlled thickness, a large area, which may indicate future applications. Based on these results, we present an electrical circuit and their principal characteristics as superconductor transition (85K), transport current density and structure. DC four probes method, scanning electron microscopy, digital optical microscopy and X-ray diffractometry were some techniques used for the characterization of this superconductor electric device. © 2006 Materials Research Society.
Resumo:
This paper presents a proposal of a model to measure the efficiency of outsourced companies in the aeronautical industry applying the methods DEA and AHP. It also proposes an evaluation in the relation between the variables of the process and the value obtained for the effiiency. The criteria of Quality, Time and Cost were considered the outputs of the process, and those criteria were quantified by AHP for DEA matrix.The number of technical documents received by those outsorced companies were considered the input of the process. The other purpose is to separate the companies in groups considered able to receive an investment to improve their process. Copyright © 2008 SAE International.
Resumo:
Modern agriculture demands investments in technology that allows the farmers to improve productivity and quality of their products, aiming to establish themselves in a competitive market. However, the high costs of acquiring and maintaining such technology may be an inhibiting factor to its spread and acceptance, mainly to a large number of small grain Brazilian farmers, who need low cost innovative technological solutions, suitable for their financial reality. Starting from this premise, this paper presents the development of a low cost prototype for monitoring the temperature and humidity of grains stored in silos, and the economic implications of cost/benefit ratio of innovative applications of low cost technology in the process of thermometry of grains. The prototype was made of two electronic units, one for acquisition and another one for data reception, as well as software, which offered the farmers more precise information for the control of aeration. The data communication between the electronic units and the software was reliable and both were developed using low cost electronic components and free software tools. The developed system was considered as potentially viable to small grain Brazilian farmers; it can be used in any type of small silos. It provided reduction of costs of installation and maintenance and also offered an easy expansion system; besides the low cost of development when compared to similar products available in the Brazilian market.
Resumo:
This work describes a control and supervision application takes into account the virtual instrumentation advantages to control and supervision industrial manufacturing stations belonging to the modular production system MPS® by Festo. These stations integrate sensors, actuators, conveyor belt and other industrial elements. The focus in this approach was to replace the use of programmable logic controllers by a computer equipped with a software application based on Labview and, together, performs the functions of traditional instruments and PLCs. The manufacturing stations had their processes modeled and simulated in Petri nets. After the models were implemented in Labview environment. Tests and previous similar works in MPS® installed in Automation Laboratory, at UNESP Sorocaba campus, showed the materials and methods used in this work allow the successful use of virtual instrumentation. The results indicate the technology as an advantageous approach for the automation of industrial processes, with gains in flexibility and reduction in project cost. © 2011 IEEE.
Resumo:
The purpose of this study is to carry on a thermoeconomic analysis at a biodiesel production plant considering the irreversibilities in each step (part I: biodiesel plant under study and functional thermoeconomic diagram [1]), making it possible to calculate the thermoeconomic cost in US$/kWh and US$/l of the biodiesel production, and the main byproduct generated, glycerin, incorporating the credits for the CO2 that is not emitted into the atmosphere (carbon credits). Assuming a sale price for both the biodiesel and the byproduct (glycerin), the annual revenue of the total investment in a plant with a capacity of 8000 t/year of biodiesel operating at 8000 h/year was calculated. The variables that directly or indirectly influence the final thermoeconomic cost include total annual biodiesel production, hours of operation, manufacturing exergy cost, molar ratio in the transesterification reaction, reaction temperature and pressure in the process. Depending on the increase or decrease in sale prices for both biodiesel and glycerin, the payback is going to significantly increase or decrease. It is evident that, in exergy terms, the sale of glycerin is of vital importance in order to reduce the biodiesel price, getting a shorter payback period for the plant under study. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In civil engineering, a structure is the whole sustainment of a construction and, thus, it is important that it remains intact throughout its lifetime. An engineering construction must last for decades without losing its functionality. However its purpose may be altered and several times the original structure does not meet the new needs of use. Still, in new buildings, the functionality is altered due to possible flaws in execution and the structure, invariably does not reach the desired solicitation needs. In cases like this, the commonly adopted solutions are, basically, the demolishment followed by the reconstruction of the desired mold or the structural reinforcement. This second option, for long years, has not been put to practice due to certain factors such as the high costs for its implantation, use of inadequate reinforcement execution techniques, and the culture of people involved in the area regarding its use and, in this case, the option would always be the reconstruction. Thoughtout the years, some techniques were developed to allow the execution of structural reinforcements with low costs and in efficient ways. An interesting, fast, efficient and economical technique is the structural reinforcement through metal sheets put together with epoxy resin that can be applied in beams, slabs and pillars. In the present work the different behavior of beams reinforced with this technique. Steel is a very recommended material for these reinforcements due to its characteristics related to traction, compression and the effectiveness of the technique related to its cost. For the attachment the epoxy resin is recommended, since it allows the joining of two materials, in this case, steel and concrete. The efficiency of this union is so considerably high that it rarely produces any flaws in adherence and, normally, when it happens it is due to problems in the execution process, not in the union of materials
Resumo:
Deconstructions, although hardly covered in Civil Engineering courses, are a very important field of study. Due to numerous factors, such as obsolescence, buildings life cycle comes to an end leading to their deactivations. Decommissioning is a process that intends to plan the hole deactivation by providing the cleaning of contaminated areas, avoiding risks to public health, as well as promoting a screening of generated waste, whether dangerous or not, offering their correct disposal or even reuse when possible. Decommissioning must be developed by a plan that covers from the recognition of the area until its releases to other uses. When this procedure is appropriate, attention must be paid to the cost effective of its implementation and to the cleaning standard that the plan intends to reach. The execution of the service allows to reuse the area, becoming productive again