104 resultados para cosmological constant
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Poincar, group generalizes the Galilei group for high-velocity kinematics. The de Sitter group is assumed to go one step further, generalizing Poincar, as the group governing high-energy kinematics. In other words, ordinary special relativity is here replaced by de Sitter relativity. In this theory, the cosmological constant I > is no longer a free parameter, and can be determined in terms of other quantities. When applied to the whole universe, it is able to predict the value of I > and to explain the cosmic coincidence. When applied to the propagation of ultra-high energy photons, it gives a good estimate of the time delay observed in extragalactic gamma-ray flares. It can, for this reason, be considered a new paradigm to approach the quantum gravity problem.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The high precision attained by cosmological data in the last few years has increased the interest in exact solutions. Analytic expressions for solutions in the Standard Model are presented here for all combinations of Lambda = 0, Lambda not equal 0, kappa = 0, and kappa = 0, in the presence and absence of radiation and nonrelativistic matter. The most complete case (here called the Lambda gamma CDM Model) has Lambda not equal 0, kappa not equal 0, and supposes the presence of radiation and dust. It exhibits clearly the recent onset of acceleration. The treatment includes particular models of interest such as the Lambda CDM Model (which includes the cosmological constant plus cold dark matter as source constituents).
Resumo:
In the presence of a cosmological constant, interpreted as a purely geometric entity, absence of matter is represented by a de Sitter spacetime. As a consequence, ordinary Poincaré special relativity is no longer valid and must be replaced by a de Sitter special relativity. By considering the kinematics of a spinless particle in a de Sitter spacetime, we study the geodesics of this spacetime, the ensuing definitions of canonical momenta, and explore possible implications for quantum mechanics. © 2007 American Institute of Physics.
Resumo:
In this paper we present the torsion influence in a braneworld scenario, developing the bulk metric Taylor expansion around the brane. This generalization is presented in order to better probe braneworld properties in a Riemann-Cartan framework, and it is also shown how the factors involving contorsion change the effective Einstein equation on the brane, the effective cosmological constant, and their consequence in a Taylor expansion of the bulk metric around the brane. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
Resumo:
We derive an one-parameter family of consistency conditions to braneworlds in the Brans-Dicke gravity. The General Relativity case is recovered by taking a correct limit of the Brans-Dicke parameter. We show that it is possible to build a multiple AdS brane scenario in a six-dimensional bulk only if the brane tensions are negative. Besides, in the five-dimensional case, it is showed that no fine tuning is necessary between the bulk cosmological constant and the brane tensions, in contrast to the Randall-Sundrum model. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial- ShareAlike Licence.
Resumo:
In this work we study a Hořava-like 5-dimensional model in the context of braneworld theory. The equations of motion of such model are obtained and, within the realm of warped geometry, we show that the model is consistent if and only if λ takes its relativistic value 1. Furthermore, we show that the elimination of problematic terms involving the warp factor second order derivatives are eliminated by imposing detailed balance condition in the bulk. Afterwards, Israel's junction conditions are computed, allowing the attainment of an effective Lagrangian in the visible brane. In particular, we show that the resultant effective Lagrangian in the brane corresponds to a (3 + 1)-dimensional Hořava-like model with an emergent positive cosmological constant but without detailed balance condition. Now, restoration of detailed balance condition, at this time imposed over the brane, plays an interesting role by fitting accordingly the sign of the arbitrary constant β, insuring a positive brane tension and a real energy for the graviton within its dispersion relation. Also, the brane consistency equations are obtained and, as a result, the model admits positive brane tensions in the compactification scheme if, and only if, β is negative and the detailed balance condition is imposed. © 2013 Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica.
Resumo:
We revisit the dynamical system-based approach of spherically symmetric vacuum braneworlds, pointing out and studying the existence of a transcritical bifurcation as the dark pressure parameter changes its sign, we analyze some consequences of not discard the brane cosmological constant. For instance, it is noteworthy that the existence of an isothermal state equation between the dark fluid parameters cannot be obtained via the requirement of a quasi-homologous symmetry of the vacuum. © 2013 Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)