24 resultados para clp
Resumo:
Pós-graduação em Reabilitação Oral - FOAR
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper aims to show practical and effectiveexperiencesfor lessons Industrial Automation Laboratory taught inundergraduate degreein ElectricalEngineering from the University Júlio MesquitaFilho - UNESP, Guaratinguetá. Experiments carriedsimulatecontrol and drive systems of electric three phase induction motors (MIT)widely usedinindustries. The experiments simulate a manufacturing environment where there isa need to control the activation and continuous operation ofelectricmotors. Seven experimentsthat simulatethe firing of electrical motors through a controlsystem, a driver along with asimulator loads coupled to the electric motor was developed. Experiments usinga Programmable Logic Controller (PLC) as acontroller,an inverter frequencyasdriver, and MagneticBrake, as simulatorengine loads . The experiments were divided accordingto the speed reference signal used fordrivingand operating the electric motor: digital and analog. The first five experiments performing the drive control and operation of the electric motor via digital signals. The sixth and seventh experiments using an analog signal as a reference speed for the electric motor
Resumo:
This work aims to make the closed loop control of a three phase induction motor, through the integration of the following equipment: a frequency inverter, the actuator system; a programmable logic controller (PLC), the controller; an encoder, the velocity sensor, used as a feedback monitoring the control variable and the three-phase induction motor, the plant to be controlled. The control is performed using a Proportional - Integrative - Derivative (PID) approach. The PLC has a help instruction, which performs the auto adjustment of the controller, that instruction is used and confronted with other adjustment methods. There are several types of methods adjustments to the PID controllers, where the empirical methods are addressed in this work. The system is deployed at the Interface and Electro Electronic Control laboratory in the Universidade Estadual Paulista Júlio Mesquita Filho, Guaratinguetá, São Paulo, then, in the future, this work becomes an experiment to be conducted in the classroom, allowing undergraduate students to develop a greater affinity to the programs used by the PLC as well as studies of undergraduate and graduate works with the help of assembly made
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
Cleft lip and palate (CLL) is a very common craniofacial anomaly. The cleft is usually corrected with surgery which may fail resulting in velopharyngeal dysfunction (VPD). The use of palatal prosthesis is an alternative treatment for correcting both, CLP and VPD. This study evaluated anxiety symptoms expectations of subjects of both genders, with velopharyngeal dysfunction, referred to palatal prosthesis program for VPD treatment. In this cross sectional and descriptive study 30 subjects with velopharyngeal dysfunction, aged 15 to 64 years old (mean age of 28) were interviewed at the Hospital for Rehabilitation of Craniofacial Anomalies (HRAC). All subjects referred to the palatal prosthesis program at HRAC in the year of 2005 were considered for participation in the study but only the first 30 candidates were included. A questionnaire addressing expectation elaborated by the researcher and the Beck Scale on anxiety were used. All subjects showed expectation regarding speech modification. Changes in professional and affective aspects of their lives after changes in speech were obtained with palatal prosthesis were the most reported expectations. Subjects’ age and gender influenced anxiety levels significantly which were minimum across subjects. High levels of expectation were more frequent than anxiety in the sample population.
Resumo:
Automated Production Systems Development involves aspects concerning the integration of technological components that exist on the market, such as: Programmable Logic Controllers (PLC), robot manipulators, various sensors and actuators, image processing systems, communication networks and collaborative supervisory systems; all integrated into a single application. This paper proposes an automated platform for experimentation, implemented through typical architecture for Automated Production Systems, which integrates the technological components described above, in order to allow researchers and students to carry out practical laboratory activities. These activities will complement the theoretical knowledge acquired by the students in the classroom, thus improving their training and professional skills. A platform designed using this generic structure will allow users to work within an educational environment that reflects most aspects found in Industrial Automated Manufacturing Systems, such as technology integration, communication networks, process control and production management. In addition, this platform offers the possibility complete automated process of control and supervision via remote connection through the internet (WebLab), enabling knowledge sharing between different teaching and research groups.
Resumo:
The use of alternative energy systems in the current days is an urgent necessity due to the problems that the planet is facing as the heating and loss of ozone layer. The scarcity of conventional energy is another problem that must be solved for the future of humanity. It must be considered that the people are inhabiting places moved away not always with available energy. The application of technologies as automation and control can help us to solve this problem. Therefore, this work aimed at apply an equipment of industrial usage, the Programmable Logical Controller, PLC, in alternative energies systems, as eolic generation and fotovoltaic generation used for water pumping, aiming the automatic control and the efficiency in the places where it has simultaneous availability of these sources, based in criterion of priority that previously established itself between them. It was made a hydraulic and energetic evaluation of the energy system, eolic and fotovoltaic, used in the automatic control system of pumping, in the place of accomplishment of the experiment, according to previously established physical conditions. The results have shown that the control system using the PLC is practicable and has trustworthiness. The program developed can be adapted for the use with several power plants in a specific application place. The fotovoltaic system of pumping, using a polycrystalline of 70 Watts connected to a pump Shurflo 8000, showed to be efficient with significant flows in almost all the months. The eolic system of pumping, using an eolic generator of 400 Watts assembled in place of experiment, did not demonstrate energetic capacity for use in this specific type of application.