93 resultados para chloroplast DNA sequence
Resumo:
Cysticercosis is one of the most important zoonosis, not only because of the effects on animal health and its economic consequences, but also due to the serious danger it poses to humans. The two main parasites involved in the taeniasis-cysticercosis complex in Brazil are Taenia saginata and Taenia solium. Differentiating between these two parasites is important both for disease control and for epidemiological studies. The purpose of this work was to identify genetic markers that could be used to differentiate these parasites. Out of 120 oligonucleotide decamers tested in random amplified polymorphic DNA (RAPD) assays, 107 were shown to discriminate between the two species of Taenia. Twenty-one DNA fragments that were specific for each species of Taenia were chosen for DNA cloning and sequencing. Seven RAPD markers were converted into sequence characterized amplified region (SCAR) markers with two specific for T. saginata and five specific for T. solium as shown by agarose gel electrophoresis. These markers were developed as potential tools to differentiate T. solium from T. saginata in epidemiological studies. © 2007 Elsevier Inc. All rights reserved.
Resumo:
A protocol to produce large amounts of bioactive homogeneous human interferon β1 expressed in Escherichia coli was developed. Human interferon β1 ser17 gene was constructed, cloned and subcloned, and the recombinant protein expressed in E. coli cells. Solubilization of recombinant human interferon β1 ser17 (rhIFN-β1 ser17) was accomplished by employing a brief shift to high alkaline pH in the presence of non-ionic detergent. The recombinant protein was purifi ed by three chromatographic steps. N-terminal amino acid sequencing and mass spectrometry analysis provided experimental evidence for the identity of the recombinant protein. Reverse phase liquid chromatography demonstrated that the content of deamidates and sulphoxides was similar to a commercial standard. Size exclusion chromatography demonstrated the absence of high molecular mass aggregates and dimers. The protocol represents an effi cient and high-yield method to obtain bioactive homogeneous monomeric rhIFN-β1 ser17 protein. It may thus represent an important step towards scaling up for rhIFN-β1 ser17 large-scale production. © 2010 Villela AD, et al.
Resumo:
Pós-graduação em Biologia Geral e Aplicada - IBB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fungi isolated in Brazil, from lettuce, broccoli, spinach, melon and tomato, were identified as Rhizoctonia solani. All lettuce isolates anastomosed with both AG 1-IA and IB subgroups and all isolates from broccoli, spinach, melon and tomato anastomosed with AG 4 subgroup HG-I, as well as with subgroups HG-II and HG-III. DNA sequence analyses of ribosomal internal transcribed spacers showed that isolates from lettuce were AG 1-IB, isolates from tomato and melon were AG 4 HG-I, and isolates from broccoli and spinach were AG 4 HG-III. The tomato isolates caused stem rot symptoms, the spinach, broccoli and melon isolates caused hypocotyl and root rot symptoms on the respective host plants and the lettuce isolates caused bottom rot. This is the first report on the occurrence in Brazil of R. solani AG 4 HG-I in tomato and melon, of AG 4 HG-III in broccoli and spinach and of AG 1-IB in lettuce.
Resumo:
Astyanax scabripinnis possesses a widespread polymorphism for metacentric B chromosomes as large as the largest chromosome pair in the A complement. on the basis of C-banding pattern, it was hypothesized that these B chromosomes are isochromosomes that have arisen by means of centromere misdivision and chromatid nondisjunction. In the present paper we test this hypothesis by analysing (i) the localization of a repetitive DNA sequence on both B chromosome arms, and (ii) synaptonemal complex formation, in order to test the functional homology of both arms. Genomic DNA digested with KpnI and analysed by gel electrophoresis showed fragments in a ladder-like pattern typical of tandemly repetitive DNA. These fragments were cloned and their tandem organization in the genome was confirmed. A 51-bp long consensus sequence, which was AT-rich (59%) and contained a variable region and two imperfect reverse sequences, was obtained. Fluorescence in situ hybridization (FISH) localized this repetitive DNA into noncentromeric constitutive heterochromatin which encompasses the terminal region of some acrocentric chromosomes, the NOR region, and interstitial polymorphic heterochromatin in chromosome 24. Most remarkably, tandem repeats were almost symmetrically placed in the two arms of the B chromosome, with the exception of two additional small clusters proximally located on the slightly longer arm. Synaptonemal complex (SC) analysis showed 26 completely paired SCs in males with 1B. The ring configuration of the B univalent persisting until metaphase I suggests that the two arms formed chiasmata. All these data provided strong support for the hypothesis that the B chromosome is an isochromosome.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli ( Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells.Results: Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-beta-D-thiogalactopyranoside ( IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture.Conclusion: The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large scale production. The physicochemical, immunological and biological analyses showed that this protocol can be useful to develop therapeutic bioproducts. In summary, the combination of different experimental strategies presented here allowed an efficient and cost-effective protocol for rhG-CSF production. These data may be of interest to biopharmaceutical companies interested in developing biosimilars and healthcare community.