209 resultados para calcium derivative
Resumo:
Objective: Taking into consideration that DNA damage plays an important role in carcinogenesis, the purpose of this study was to evaluate whether regular and white mineral trioxide aggregate (MTA) are able to induce genetic damage in primary human cells. Study design: Human peripheral lymphocytes obtained from 10 healthy volunteers were exposed to 2 presentation forms of MTA at final concentrations ranging from 1 to 1000 μg/mL for 1 hour at 37°C. The negative control group was treated with vehicle control (phosphate buffer solution, PBS) for 1 hour at 37°C and the positive control group was treated with hydrogen peroxide (at 100 μM) for 5 minutes on ice. Results were analyzed by the Friedman nonparametric test. Results: The results pointed out that either regular or white MTA in all concentrations tested did not induce DNA breakage in human peripheral lymphocytes as depicted by the mean tail moment. Conclusion: In summary, our results indicate that exposure to MTA may not be a factor that increases the level of DNA lesions in human peripheral lymphocytes as detected by single cell gel (comet) assay. © 2006 Mosby, Inc. All rights reserved.
Resumo:
Objective: The objective of this study was to investigate the mediators and the resident peritoneal cells involved in the neutrophil migration (NM) induced by mineral trioxide aggregate (MTA) in mice. Study design: MTA (25 mg/cavity) was injected into normal and pretreated peritoneal cavities (PC) with indomethacin (IND), dexamethasone (DEX), BWA4C, U75302, antimacrophage inflammatory protein-2 (MIP-2), and anti-interleukin-1β (IL-1β) antibodies and the NM was determined. The role of macrophage (MO) and mast cells (MAST) was determined by administration of thioglycollate 3% or 48/80 compound, respectively. The concentration of IL-1β and MIP-2 exudates was measured by ELISA. Results: MTA induced dose- and time-dependent NM into mice PC, with the participation of MO and MAST. NM was inhibited by DEX, BWA4C, and U75302, as well as anti-MIP-2 and anti-IL-1β antibodies. In the exudates, IL-1β and MIP-2 were detected. Conclusions: This study suggests that MTA induces NM via a mechanism dependent on MAST and MO mediated by IL-1β, MIP-2, and LTB4. © 2008 Mosby, Inc. All rights reserved.
Resumo:
Aim: The present randomized, controlled prospective study evaluated the histomorphological response of human dental pulps capped with two grey mineral trioxide aggregate (MTA) compounds. Methodology: Pulp exposures were performed on the occlusal floor of 40 human permanent pre-molars. The pulp was capped either with ProRoot (Dentsply) or MTA-Angelus (Angelus) and restored with zinc oxide eugenol cement. After 30 and 60 days, teeth were extracted and processed for histological examination and the effects on the pulp were scored. The data were subjected to Kruskal-Wallis and Conover tests (α = 0.05). Results: In five out of the 40 teeth bacteria were present in pulp tissue. No significant difference was observed between the two materials (P > 0.05) in terms of overall histological features (hard tissue bridge, inflammatory response, giant cells and particles of capping materials). Overall, 94% and 88% of the specimens capped with MTA-Angelus and ProRoot, respectively, showed either total or partial hard tissue bridge formation (P > 0.05). Conclusions: Both commercial materials ProRoot (Dentsply) and MTA-Angelus (Angelus) produced similar responses in the pulp when used for pulp capping in intact, caries-free teeth. © 2009 International Endodontic Journal.
Resumo:
This study evaluated the cytotoxic effects of 2 mineral trioxide aggregate (MTA) cements - White-MTA-Angelus and a new formulation, MTA-Bio - on odontoblast-like cell (MDPC-23) cultures. Twenty-four disc-shaped (2 mm diameter x 2 mm thick) specimens were fabricated from each material and immersed individually in wells containing 1 mL of DMEM culture medium for either 24 h or 7 days to obtain extracts, giving rise to 4 groups of 12 specimens each: G1 - White-MTA/24 h; G2 - White-MTA/7 days; G3 - MTA-Bio/24 h; and G4 - MTA-Bio/7 days. Plain culture medium (DMEM) was used as a negative control (G5). Cells at 30,000 cells/cm 2 concentration were seeded in the wells of 24-well plates and incubated in a humidified incubator with 5% CO 2 and 95% air at 37°C for 72 h. After this period, the culture medium of each well was replaced by 1 mL of extract (or plain DMEM in the control group) and the cells were incubated for additional 2 h. Cell metabolism was evaluated by the MTT assay and the data were analyzed statistically by ANOVA and Tukey's test (α=0.05). Cell morphology and the surface of representative MTA specimens of each group were examined by scanning electron microscopy. There was no statistically significant difference (p>0.05) between G1 and G2 or between G3 and G4. No significant difference (p>0.05) was found between the experimental and control groups either. Similar cell organization and morphology were observed in all groups, regardless of the storage periods. However, the number of cells observed in the experimental groups decreased compared to the control group. MTA-Bio presented irregular surface with more porosities than White-MTA. In conclusion, White-MTA and MTA-Bio presented low cytotoxic effects on odontoblast-like cell (MDPC-23) cultures.
Resumo:
The aim of this study was to investigate the effects of mineral trioxide aggregate (MTA), Sealapex, and a combination of Sealapex and MTA (Sealapex Plus) on the reaction of subcutaneous connective tissue of rats, and on cell viability and cytokine production in mouse fibroblasts. The tissue reaction was carried out with dentin tubes containing the materials implanted in the dorsal connective tissue of rats. The histological analysis was performed after 7 and 30 days. Millipore culture plate inserts with polyethylene tubes filled with materials were placed into 24-well cell culture plates with mouse fibroblasts to evaluate the cell viability by MTT assay. ELISA assays were also performed after 24 h of exposure of the mouse fibroblasts to set material disks. Histopathologic examination showed Von Kossa-positive granules that were birefringent to polarized light for all the studied materials at the tube openings. No material inhibited the cell viability in the in vitro test. It was detected IL-6 production in all root-end filling materials. MTA and Sealapex Plus induced a slight raise of mean levels of IL-1β. The results suggest that Sealapex Plus is biocompatible and stimulates the mineralization of the tissue.
Resumo:
Introduction: The aim of this study was to evaluate the pH, calcium ion release, setting time, and solubility of white mineral trioxide aggregate (WMTA) and white Portland cement (WPC) combined with the following radiopacifying agents: bismuth oxide (BO), calcium tungstate (CT), and zirconium oxide (ZO). Methods: Fifty acrylic teeth with root-end filling material were immersed in ultrapure water for measurement of pH and calcium release (atomic absorption spectrophotometry) at 3, 24, 72, and 168 hours. For evaluation of setting time, each material was analyzed according to the American Society for Testing and Materials guidelines 266/08. The solubility test was performed according to American National Standards Institute/American Dental Association specification no. 57/2000. Solubility, setting time, and pH values were compared by using analysis of variance and Tukey test, and the values of calcium release were compared by the Kruskal-Wallis and Miller tests. The significance level was set at 5%. Results: The pH and calcium release were higher at 3 and 24 hours. WPC was the material with the higher values for both properties. WMTA had the greatest solubility among all materials (P <.05). All radiopacifiers increased the setting time of WPC, and WMTA had the shortest setting time among all materials (P < .05). Conclusions: All materials released calcium ions. Except for WPC/CT at 168 hours, all materials promoted an alkaline pH. On the basis of the obtained results, ZO and CT can be considered as potential radiopacifying agents to be used in combination with Portland cement. Copyright © 2012 American Association of Endodontists.
Resumo:
Although it has already been shown that enamel matrix derivative (Emdogain((R))) promotes periodontal regeneration in the treatment of intrabony periodontal defects, there is little information concerning its regenerative capacity in cases of delayed tooth replantation. To evaluate the alterations in the periodontal healing of replanted teeth after use of Emdogain((R)), the central incisors of 24 Wistar rats (Rattus norvegicus albinus) were extracted and left on the bench for 6 h. Thereafter, the dental papilla and the enamel organ of each tooth were sectioned for pulp removal by a retrograde way and the canal was irrigated with 1% sodium hypochlorite. The teeth were assigned to two groups:in group I, root surface was treated with 1% sodium hypochlorite for 10 min (changing the solution every 5 min), rinsed with saline for 10 min and immersed in 2% acidulated-phosphate sodium fluoride for 10 min; in group II, root surfaces were treated in the same way as described above, except for the application of Emdogain((R)) instead of sodium fluoride. The teeth were filled with calcium hydroxide (in group II right before Emdogain((R)) was applied) and replanted. All animals received antibiotic therapy. The rats were killed by anesthetic overdose 10 and 60 days after replantation. The pieces containing the replanted teeth were removed, fixated, decalcified and paraffin-embedded. Semi-serial 6-mu m-thick sections were obtained and stained with hematoxylin and eosin for histologic and histometric analyses. The use of 2% acidulated-phosphate sodium fluoride provided more areas of replacement resorption. The use of Emdogain((R)) resulted in more areas of ankylosis and was therefore not able to avoid dentoalveolar ankylosis. It may be concluded that neither 2% acidulated-phosphate sodium fluoride nor Emdogain((R)) were able to prevent root resorption in delayed tooth replantation in rats.
Resumo:
The purpose of this study was to investigate long-term pH changes in cavities prepared in root surface dentin of extracted teeth after obturation of the root canal with gutta-percha and a variety of sealers containing calcium hydroxide. After cleaning and shaping, root canals in 50 recently extracted, human single-rooted teeth were divided into five groups. Each of four groups was obturated with gutta-percha and either Sealapex, Sealer 26, Apexit, or CRCS, all of which contain calcium hydroxide. The remaining group served as the control and was not obturated with gutta-percha or sealer. Cavities were prepared in the facial surface of the roots in the cervical and middle regions. The pH was measured in these dentinal cavities at the initiation of the experiment, and 3, 7, 14, 21, 28, 45, 60, 90, and 120 days after obturation. Results indicate that the pH at the surface of the root does not become alkaline when calcium hydroxide cements are used as root canal sealers. Regardless of the sealer used, the observed pattern of pH change was not different from that seen in the control group of roots that were not treated with sealer. It is concluded that calcium hydroxide-containing cements, although suitable for use as root canal sealants, do not produce an alkaline pH at the root surface. If such a pH change is related to treatment of root resorption, these sealants do not contribute to this treatment. Copyright © 1996 by The American Association of Endodontists.
Resumo:
The calcium hydroxide ionization of four root canal sealers (Sealapex, CRCS, Sealer 26, and Apexit) was studied by measuring conductivity and pH and by conducting atomic absorption spectrophotometry. Samples 6 mm in diameter and 15 mm long were prepared from these sealers. After setting and 48 h storage in a desiccator, five samples of each material were placed in 50 mL distilled water and analysed after 0,1,2,4, 6 and 24 h and 5, 15 and 30 days. The results showed that Sealapex was the root canal sealer showing the highest pH, ionic calcium and total calcium values (P<0.05) throughout the experimental period, followed by CRCS, Apexit and Sealer 26.
Resumo:
The subject of this paper was to study the behavior of the periapical tissues of dogs' teeth after biopulpectomy and dressing with calcium hydroxide or a corticosteroid-antibiotic association, before root canal filling with zinc oxide eugenol (ZOE) or Sealapex sealers. The teeth were overinstrumented and dressed for 7 days before the root canal filling. The animals were sacrificed 180 days after treatment and the specimens were prepared for morphological analysis. Specimens treated with Sealapex presented a higher number of cases with biological closure than ZOE. When the root canals were filled with ZOE, better results were observed with the use of the Ca(OH)2 dressing.
Resumo:
Formocresol, paramonochlorophenol, and calcium hydroxide are widely used in dentistry because of their antibacterial activities in root canal disinfection. However, the results of genotoxicity studies using these materials are inconsistent in literature. The goal of this study was to examine the genotoxic potential of formocresol, paramonochlorophenol, and calcium hydroxide using mouse lymphoma cells and human fibroblasts cells in vitro by the comet assay. Data were assessed by Kruskal-Wallis nonparametric test. The results showed that all compounds tested did not cause DNA damage for the tail moment or tail intensity parameters. These findings suggest that formocresol, paramonochlorophenol, and calcium hydroxide do not promote DNA damage in mammalian cells and that the comet assay is a suitable tool to investigate genotoxicity.
Resumo:
Eighty root canals of the premolars of 4 dogs, with vital pulp, were instrumented and filled during the same session with the Sealapex, CRCS, Sealer 26, and Apexit sealers, the animals were sacrificed 180 days after root canal filling and their maxillae and mandibles were removed and fixed in 10% formalin, After routine histologic processing, the sections were stained with hematoxylin-eosin and Mallory trichrome, Histopathologic analysis showed that Sealapex was the sealer that best permitted the deposition of mineralized tissue at the apical level and was the only sealer that provided complete sealing (37.5% of cases), With the use of Sealapex, no inflammatory infiltrate occurred and there was no reabsorption of mineralized tissues, In contrast, partial sealing and a moderate inflammatory infiltrate occurred with the use of CRCS, When Apexit and Sealer 26 were used the absence of sealing was frequent and active reabsorption of mineralized tissues occurred in most cases, the inflammatory infiltrate predominating with the use of Apexit was of the severe type, whereas with the use of Sealer 26 the inflammatory infiltrate was mild or absent.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The effects of serum and brain calcium concentration on rat behavior were tested by maintaining animals on either distilled water (N = 60) or water containing 1% calcium gluconate (N = 60) for 3 days. Animals that were maintained on high calcium drinking water presented increased serum calcium levels (control = 10.12 ± 0.46 vs calcium treated = 11.62 ± 0.51 µg/dl). Increase of brain calcium levels was not statistically significant. In the behavioral experiments each rat was used for only one test. Rats that were maintained on high calcium drinking water showed increased open-field behavior of ambulation (20.68%) and rearing (64.57%). on the hole-board, calcium-supplemented animals showed increased head-dip (67%) and head-dipping (126%), suggesting increased ambulatory and exploratory behavior. The time of social interaction was normal in animals maintained on drinking water containing added calcium. Rats supplemented with calcium and submitted to elevated plus-maze tests showed a normal status of anxiety and elevated locomotor activity. We conclude that elevated levels of calcium enhance motor and exploratory behavior of rats without inducing other behavioral alterations. These data suggest the need for a more detailed analysis of several current proposals for the use of calcium therapy in humans, for example in altered blood pressure states, bone mineral metabolism disorders in the elderly, hypocalcemic states, and athletic activities.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)