313 resultados para blood lactate concentration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Maximal lactate steady state (MLSS) corresponds to the highest blood lactate concentration (MLSSc) and workload (MLSSw) that can be maintained over time without continual blood lactate accumulation and is considered an important marker of endurance exercise capacity. The present study was undertaken to determine MLSSw and MLSSc in running mice. In addition, we provide an exercise training protocol for mice based on MLSSw.2. Maximal lactate steady state was determined by blood sampling during multiple sessions of constant-load exercise varying from 9 to 21 m/min in adult male C57BL/6J mice. The constant-load test lasted at least 21 min. The blood lactate concentration was analysed at rest and then at 7 min intervals during exercise.3. The MLSSw was found to be 15.1 +/- 0.7 m/min and corresponded to 60 +/- 2% of maximal speed achieved during the incremental exercise testing. Intra- and interobserver variability of MLSSc showed reproducible findings. Exercise training was performed at MLSSw over a period of 8 weeks for 1 h/day and 5 days/week. Exercise training led to resting bradycardia (21%) and increased running performance (28%). of interest, the MLSSw of trained mice was significantly higher than that in sedentary littermates (19.0 +/- 0.5 vs 14.2 +/- 0.5 m/min; P = 0.05), whereas MLSSc remained unchanged (3.0 mmol/L).4. Altogether, we provide a valid and reliable protocol to improve endurance exercise capacity in mice performed at highest workload with predominant aerobic metabolism based on MLSS assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction - the aim of this study was to analyze the validity of the critical speed (CS) to determine the speed corresponding to 4 mmol 1(-1) of blood lactate (S4) and the speed in a 30 min test (S30min) of swimmers aged 10-15 years.Synthesis of facts - CS, S4 and S30min were determined in 12 swimmers (eight boys and four girls) divided into two groups: 10-12 years and 13-15 years.Conclusion - CS was a good predictor of aerobic performance (S30min) independent of the chronological age, providing practical information about the aerobic performance state of young swimmers. (C) 2002, Editions scientifiques et medicates, Elsevier SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim. The objective of this study was to verify the effects of active (AR) and passive recovery (PR) after a judo match on blood lactate removal and on performance in an anaerobic intermittent task (4 bouts of upper body Wingate tests with 3-min interval between bouts; 4WT).Methods. The sample was constituted by 17 male judo players of different competitive levels: A) National (Brazil) and International medallists (n. 5). B) State (São Paulo) medallists (n. 7). Q City (São Paulo) medallists (n. 5). The subjects were submitted to: 1) a treadmill test for determination of VO2peak and velocity at anaerobic threshold (VAT); 2) body composition; 3) a 5-min judo combat, 15-min of AR or PR followed by 4WT.Results. The groups did not differ with respect to: body weight, VO2peak, VAT, body fat percentage, blood lactate after combats. No difference was observed in performance between AR and PR, despite a lower blood lactate after combat (10 and 15 min) during AR compared to PR. Groups A and B performed better in the high-intensity intermittent exercise compared to athletes with lower competitive level (C).Conclusion. The ability to maintain power output during intermittent anaerobic exercises can discriminate properly judo players of different levels. Lactate removal was improved with AR when compared to PR but AR did not improve performance in a subsequent intermittent anaerobic exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

β-Adrenoreceptor blockade is reported to impair endurance, power output and work capacity in healthy subjects and patients with hypertension. The purpose of this study was to investigate the effect in eighth athletic males of an acute β-adrenergic blockade with propranolol on their individual power output corresponding to a defined lactate minimum (LM). Eight fit males (cyclist or triathlete) performed a protocol to determine the power output corresponding to their individual LM (defined from an incremental exercise test after a rapidly induced exercise lactic acidosis). This protocol was performed twice in a double-blind randomized order by each athlete first ingesting propranolol (80mg) and in a second trial a placebo, 120 minutes respectively prior to the test sequence. The blood lactate concentration obtained 7 minutes after anaerobic exercise (a Wingate test) was significantly lower after acute β-adrenergic blockade (8.6 ± 1.6mM) than under the placebo condition (11.7 ± 1.6mM). The work rate at the LM was lowered from 215.0 ± 18.6 to 184.0 ± 18.6 watts and heart rate at the LM was reduced from 165 ± 1.5 to 132 ± 2.2 beats/minute as a result of the blockade. There was a non-significant correlation (r = 0.29) between the power output at the LM with and without acute β-adrenergic blockade. In conclusion, since the intensity corresponding to the LM is related to aerobic performance, the results of the present study, are able to explain in part, the reduction in aerobic power output produced during β-adrenergic blockade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to analyze the validity of the velocity corresponding to the onset of blood lactate accumulation (OBLA) and critical velocity (CV) to determine the maximal lactate steady state (MLSS) in soccer players. Twelve male soccer players (21.5 ± 1.0 years) performed an incremental treadmill test for the determination of OBLA. The velocity corresponding to OBLA (3.5 mM of blood lactate) was determined through linear interpolation. The subjects returned to the laboratory on 7 occasions for the determination of MLSS and CV. The MLSS was determined from 5 treadmill runs of up to 30-minute duration and defined as the highest velocity at which blood lactate did not increase by more than 1 mM between minutes 10 and 30 of the constant velocity runs. The CV was determined by 2 maximal running efforts of 1,500 and 3,000 m performed on a 400-m running track. The CV was calculated as the slope of the linear regression of distance run versus time. Analysis of variance revealed no significant differences between OBLA (13.6 ± 1.4 km·h-1) and MLSS (13.1 ± 1.2 km·h-1) and between OBLA and CV (14.4 ± 1.1 km·h-1). The CV was significantly higher than the MLSS. There was a significant correlation between MLSS and OBLA (r = 0.80), MLSS and CV (r = 0.90), and OBLA and CV (r = 0.80). We can conclude that the OBLA can be utilized in soccer players to estimate the MLSS. In this group of athletes, however, CV does not represent a sustainable steady-state exercise intensity. © 2005 National Strength & Conditioning Association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The higher concentration during exercise at which lactate entry in blood equals its removal is known as maximal lactate steady state (MLSS) and is considered an important indicator of endurance exercise capacity. The aim of the present study was to determine MLSS in running rats. Adult male Wistar sedentary rats, which were selected and adapted to treadmill running for three weeks, were used. After becoming familiarized with treadmill running, the rats were submitted to five exercise tests at 15, 20, 25, 30 and 35 m/min velocities. The velocity sequence was distributed at random. Each test consisted of continuous running for 25 min at one velocity or until the exhaustion. Blood lactate was determined at rest and each 5 min of exercise to find the MLSS. The running rats presented MLSS at the 20 m/min velocity, with blood lactate of 3.9±1.1 mmol/L. At the 15 m/min velocity, the blood lactate also stabilized, but at a lower concentration (3.2±1.1 mmol/L). There was a progressive increase in blood lactate concentration at higher velocities, and some animals reached exhaustion between the 10 th and 25 th minute of exercise. These results indicate that the protocol of MLSS can be used for determination of the maximal aerobic intensity in running rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acute administration of an indirect activator of the enzyme pyruvate dehydroge-nase (PDH) in human athletes causes a reduction in blood lactate level during and after exercise. A single IV dose (2.5m.kg-1) of dichloroacetate (DCA) was administered before a submaximal incremental exercise test (IET) with five velocity steps, from 5.0 m.s-1 for 1 min to 6.0, 6.5, 7.0 and 7.5m.s-1 every 30s in four untrained mares. The blood collections were done in the period after exercise, at times 1, 3, 5, 10, 15 and 20 min. Blood lactate and glucose (mM) were determined electro-enzymatically utilizing a YSI 2300 automated analyzer. There was a 15.3% decrease in mean total blood lactate determined from the values obtained at all assessment times in both trials after the exercise. There was a decrease in blood lactate 1, 3, 5, 10, 15 and 20 min after exercise for the mares that received prior DCA treatment, with respective mean values of 6.31±0.90 vs 5.81±0.50, 6.45±1.19 vs 5.58±1.06, 6.07±1.56 vs 5.26±1.12, 4.88±1.61 vs 3.95±1.00, 3.66±1.41 vs 2.86±0.75 and 2.75±0.51 vs 2.04±0.30. There was no difference in glucose concentrations. By means of linear regression analysis, V140, V160, V180 and V200 were determined (velocity at which the rate heart is 140, 160, 180, and 200 beats/minute, respectively). The velocities related to heart rate did not differ, indicating that there was no ergogenic effect, but prior administration of a relatively low dose of DCA in mares reduced lactatemia after an IET.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estudou-se a resposta do cortisol e da glicemia em 12 equinos da raça Puro Sangue Árabe destreinados (T0) por oito meses e submetidos a um período de 90 dias de treinamento aeróbio (T90). Para avaliação dos efeitos do treinamento, empregou-se teste ergométrico constituído de exercício progressivo em esteira rolante, acompanhado por colheitas de sangue 15 segundos antes do término de cada etapa de esforço. A velocidade (intensidade) do treino foi definida como sendo 80% da V4 (velocidade na qual a lactacidemia atinge 4mmol/L). Adicionalmente, no último mês de treinamento, foi instituído, uma vez por semana, exercício com velocidades variáveis, chamado fartlek. Após 90 dias de treinamento, a concentração plasmática de cortisol elevou-se e após o teste de esforço (20min), houve aumento da glicemia. Este resultado reflete a possibilidade de adaptação ao treinamento. Conclui-se que o cortisol plasmático pode ser utilizado como ferramenta na avaliação de um programa de treinamento em equinos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A percepção subjetiva de esforço (PSE) é determinada de forma não invasiva e utilizada juntamente com a resposta lactacidêmica como indicadores de intensidade durante teste incremental. em campo, especialmente na natação, há dificuldades nas coletas sanguíneas; por isso, utilizam-se protocolos alternativos para estimar o limiar anaeróbio. Assim, os objetivos do estudo foram: prescrever um teste incremental baseado na PSE (Borg 6-20) visando estimar os limiares metabólicos determinados por métodos lactacidêmicos [ajuste bi-segmentado (V LL), concentração fixa-3,5mM (V3,5mM) e distância máxima (V Dmáx)]; relacionar a PSE atribuída em cada estágio com a freqüência cardíaca (FC) e com parâmetros mecânicos de nado [freqüência (FB) e amplitude de braçada (AB)], analisar a utilização da escala 6-20 na regularidade do incremento das velocidades no teste e correlacionar os limiares metabólicos com a velocidade crítica (VC). Para isso, 12 nadadores (16,4 ± 1,3 anos) realizaram dois esforços máximos (200 e 400m); os dados foram utilizados para determinar a VC, velocidade de 400m (V400m) e a freqüência crítica de braçada (FCb); e um teste incremental com intensidade inicial baseada na PSE, respectivamente, 9, 11, 13, 15 e 17; sendo monitorados em todos os estágios a FC, lactacidêmia e os tempos de quatro ciclos de braçadas e das distâncias de 20m (parte central da piscina) e 50m. Posteriormente, foram calculadas as velocidades dos estágios, FB, AB, V LL, V3,5mM e V Dmáx. Utilizaram-se ANOVA e correlação de Pearson para análise dos resultados. Não foram encontradas diferenças entre VC, V Dmáx e V LL, porém a V3,5mM foi inferior às demais velocidades (P < 0,05). Correlações significativas (P < 0,05) foram observadas entre VC versus V400m, V Dmáx e V3,5mM; V400m versus V3,5mM e V Dmáx; V Dmáx versus V LL; e no teste incremental entre PSE versus velocidade, [Lac], FC, FB e AB (P < 0,05). Concluímos que a PSE é uma ferramenta confiável no controle da velocidade dos estágios durante teste incremental na natação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Avaliaram-se as alterações do pH, da P O2 e da P CO2 do sangue arterial e da concentração de lactato sangüíneo de 11 cavalos adultos da raça Árabe, submetidos a exercício progressivo em esteira de alta velocidade. Antes do exercício, no intervalo dos 15 segundos finais de cada mudança de velocidade e aos 1, 3 e 5 minutos após o término do exercício foram coletadas amostras de sangue arterial e venoso para a mensuração dos gases sangüíneos e da concentração de lactato. O exercício resultou em diminuição do pH, da pressão parcial de O2 (P O2) e da pressão parcial de CO2 (P CO2). A concentração de lactato sangüíneo elevou-se exponencialmente a partir da velocidade de 8,0m/s até os momentos após término do exercício.