23 resultados para biosensing


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C-reactive protein (CRP) is an acute phase protein whose levels are increased in many disorders. There exists, in particular, a great deal of interest in the correlation between blood serum levels and the severity of risk for cardiovascular disease. A sensitive, label-free, non-amplified and reusable electrochemical impedimetric biosensor for the detection of CRP in blood serum was developed herein based on controlled and coverage optimised antibody immobilization on standard polycrystalline gold electrodes. Charge transfer resistance changes were highly target specific, linear with log. CRP. concentration across a 0.5-50. nM range and associated with a limit of detection of 176. pM. Significantly, the detection limits are better than those of current CRP clinical methods and the assays are potentially cheap, relatively automated, reusable, multiplexed and highly portable. The generated interfaces were capable not only of comfortably quantifying CRP across a clinically relevant range of concentrations but also of doing this in whole blood serum with interfaces that were, subsequently, reusable. The importance of optimising receptor layer resistance in maximising assay sensitivity is also detailed. © 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The peptide NS5A-1 (PPLLESWKDPDYVPPWHG), derived from hepatitis C virus (HCV) NS5A protein, was immobilized into layer-by-layer (LbL) silk fibroin (SF) films. Deposition was monitored by UV-vis absorption measurements at each bilayer deposited. The interaction SF/peptide film induced secondary structure in NS5A-1 as indicated by fluorescence and circular dichroism (CD) measurements. Voltammetric sensor (SF/NS5A-1) properties were observed when the composite film was tested in the presence of anti-HCV. The peptide-silk fibroin interaction studied here showed new architectures for immunosensors based on antigenic peptides and SF as a suitable immobilization matrix. © 2013 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The control of molecular architectures has been exploited in layer-by-layer (LbL) films deposited on Au interdigitated electrodes, thus forming an electronic tongue (e-tongue) system that reached an unprecedented high sensitivity (down to 10-12 M) in detecting catechol. Such high sensitivity was made possible upon using units containing the enzyme tyrosinase, which interacted specifically with catechol, and by processing impedance spectroscopy data with information visualization methods. These latter methods, including the parallel coordinates technique, were also useful for identifying the major contributors to the high distinguishing ability toward catechol. Among several film architectures tested, the most efficient had a tyrosinase layer deposited atop LbL films of alternating layers of dioctadecyldimethylammonium bromide (DODAB) and 1,2-dipalmitoyl-sn-3-glycero-fosfo-rac-(1-glycerol) (DPPG), viz., (DODAB/DPPG)5/DODAB/Tyr. The latter represents a more suitable medium for immobilizing tyrosinase when compared to conventional polyelectrolytes. Furthermore, the distinction was more effective at low frequencies where double-layer effects on the film/liquid sample dominate the electrical response. Because the optimization of film architectures based on information visualization is completely generic, the approach presented here may be extended to designing architectures for other types of applications in addition to sensing and biosensing. © 2013 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early detection assays play a key role in the successful treatment of most diseases. Redox capacitive biosensors were recently introduced as a potential electroanalytical assay platform for point-of-care applications but alternative surfaces (besides a mixed layer containing ferrocene and antibody receptive component) for recruiting important clinical biomarkers are still needed. Aiming to develop alternative receptive surfaces for this novel electrochemical biosensing platform, we synthesized a ferrocene redoxtagged peptide capable of self-assembly into metallic interfaces, a potentially useful biological surface functionalization for bedside diagnostic assays. As a proof of concept we used C-reactive protein (CRP), as a model biomarker, and compared the obtained results to those of previously reported capacitive assays. The redox-tagged peptide approach shows a limit of detection of 0.8 nmol L 1 (same as 94 ng mL 1 ) and a linear range (R2 ∼98%) with the logarithm of the concentration of the analyte comprising 0.5–10.0 nmol L 1 , within a clinical relevant range for CRP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An ability to detect and quantify protein molecules, harbingers of specific pathologies, potentially underpins both early disease diagnosis and an assessment of treatment efficacy. However, the specific detection of a particular protein biomarker in a complex environment is by no means an easy task and requires a progressive improvement in sensor technology. The high surface area, volume, electrical conductance, atomic level thickness and apparent biocompatibility of graphene makes it potentially an exceedingly powerful transducer of biorecognition events; the demands of its application in biosensing, and progress to date are reviewed herein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)