77 resultados para biological model
Resumo:
The advent of molecular markers has created opportunities for a better understanding of quantitative inheritance and for developing novel strategies for genetic improvement of agricultural species, using information on quantitative trait loci (QTL). A QTL analysis relies on accurate genetic marker maps. At present, most statistical methods used for map construction ignore the fact that molecular data may be read with error. Often, however, there is ambiguity about some marker genotypes. A Bayesian MCMC approach for inferences about a genetic marker map when random miscoding of genotypes occurs is presented, and simulated and real data sets are analyzed. The results suggest that unless there is strong reason to believe that genotypes are ascertained without error, the proposed approach provides more reliable inference on the genetic map.
Resumo:
Two experiments were conducted to develop and evaluate a model to estimate ME requirements and determine Gompertz growth parameters for broilers. The first experiment was conducted to determine maintenance energy requirements and the efficiencies of energy utilization for fat and protein deposition. Maintenance ME (ME m) requirements were estimated to be 157.8, 112.1, and 127.2 kcal of ME/kg 0.75 per day for broilers at 13, 23, and 32°C, respectively. Environmental temperature (T) had a quadratic effect on maintenance requirements (ME m = 307.87 - 15.63T + 0.3105T 2; r 2= 0.93). Energy requirements for fat and protein deposition were estimated to be 13.52 and 12.59 kcal of ME/g, respectively. Based on these coefficients, a model was developed to calculate daily ME requirements: ME = BW 0.75 (307.87 - 15.63T + 0.3105 T 2) + 13.52 G f + 12.59 G p. This model considers live BW, the effects of environmental temperature, and fractional fat (G f) and protein (G p) deposition. The second experiment was carried out to estimate the growth parameters of Ross broilers and to collect data to evaluate the ME requirement model proposed. Live BW, empty feather-free carcass, weight of the feathers, and carcass chemical compositions were analyzed until 16 wk of age. Parameters of Gompertz curves for each component were estimated. Males had higher growth potential and higher capacity to deposit nutrients than females, except for fat deposition. Data of BW and body composition collected in this experiment were fitted into the energy model proposed herein and the equations described by Emmans (1989) and Chwalibog (1991). The daily ME requirements estimated by the model determined in this study were closer to the ME intake observed in this trial compared with other models. ©2005 Poultry Science Association, Inc.
Resumo:
Additive and nonadditive genetic effects on preweaning weight gain (PWG) of a commercial crossbred population were estimated using different genetic models and estimation methods. The data set consisted of 103,445 records on purebred and crossbred Nelore-Hereford calves raised under pasture conditions on farms located in south, southeast, and middle west Brazilian regions. In addition to breed additive and dominance effects, the models including different epistasis covariables were tested. Models considering joint additive and environment (latitude) by genetic effects interactions were also applied. In a first step, analyses were carried out under animal models. In a second step, preadjusted records were analyzed using ordinary least squares (OLS) and ridge regression (RR). The results reinforced evidence that breed additive and dominance effects are not sufficient to explain the observed variability in preweaning traits of Bos taurus x Bos indicus calves, and that genotype x environment interaction plays an important role in the evaluation of crossbred calves. Data were ill-conditioned to estimate the effects of genotype x environment interactions. Models including these effects presented multicolinearity problems. In this case, RR seemed to be a powerful tool for obtaining more plausible and stable estimates. Estimated prediction error variances and variance inflation factors were drastically reduced, and many effects that were not significant under ordinary least squares became significant under RR. Predictions of PWG based on RR estimates were more acceptable from a biological perspective. In temperate and subtropical regions, calves with intermediate genetic compositions (close to 1/2 Nelore) exhibited greater predicted PWG. In the tropics, predicted PWG increased linearly as genotype got closer to Nelore. ©2006 American Society of Animal Science. All rights reserved.
Resumo:
The aim of this study was to evaluate the influence of the high values of insertion torques on the stress and strain distribution in cortical and cancellous bones. Based on tomography imaging, a representative mathematical model of a partial maxilla was built using Mimics 11.11 and Solid Works 2010 softwares. Six models were built and each of them received an implant with one of the following insertion torques: 30, 40, 50, 60, 70 or 80 Ncm on the external hexagon. The cortical and cancellous bones were considered anisotropic. The bone/implant interface was considered perfectly bonded. The numerical analysis was carried out using Ansys Workbench 10.0. The convergence of analysis (6%) drove the mesh refinement. Maximum principal stress (σ max) and maximum principal strain (ε max) were obtained for cortical and cancellous bones around to implant. Pearson's correlation test was used to determine the correlation between insertion torque and stress concentration in the periimplant bone tissue, considering the significance level at 5%. The increase in the insertion torque generated an increase in the σ max and ε max values for cortical and cancellous bone. The σmax was smaller for the cancellous bone, with greater stress variation among the insertion torques. The ε max was higher in the cancellous bone in comparison to the cortical bone. According to the methodology used and the limits of this study, it can be concluded that higher insertion torques increased tensile and compressive stress concentrations in the periimplant bone tissue.
Resumo:
Studies investigating the use of random regression models for genetic evaluation of milk production in Zebu cattle are scarce. In this study, 59,744 test-day milk yield records from 7,810 first lactations of purebred dairy Gyr (Bos indicus) and crossbred (dairy Gyr × Holstein) cows were used to compare random regression models in which additive genetic and permanent environmental effects were modeled using orthogonal Legendre polynomials or linear spline functions. Residual variances were modeled considering 1, 5, or 10 classes of days in milk. Five classes fitted the changes in residual variances over the lactation adequately and were used for model comparison. The model that fitted linear spline functions with 6 knots provided the lowest sum of residual variances across lactation. On the other hand, according to the deviance information criterion (DIC) and Bayesian information criterion (BIC), a model using third-order and fourth-order Legendre polynomials for additive genetic and permanent environmental effects, respectively, provided the best fit. However, the high rank correlation (0.998) between this model and that applying third-order Legendre polynomials for additive genetic and permanent environmental effects, indicates that, in practice, the same bulls would be selected by both models. The last model, which is less parameterized, is a parsimonious option for fitting dairy Gyr breed test-day milk yield records. © 2013 American Dairy Science Association.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dosage and frequency of treatment schedules are important for successful chemotherapy. However, in this work we argue that cell-kill response and tumoral growth should not be seen as separate and therefore are essential in a mathematical cancer model. This paper presents a mathematical model for sequencing of cancer chemotherapy and surgery. Our purpose is to investigate treatments for large human tumours considering a suitable cell-kill dynamics. We use some biological and pharmacological data in a numerical approach, where drug administration occurs in cycles (periodic infusion) and surgery is performed instantaneously. Moreover, we also present an analysis of stability for a chemotherapeutic model with continuous drug administration. According to Norton & Simon [22], our results indicate that chemotherapy is less eficient in treating tumours that have reached a plateau level of growing and that a combination with surgical treatment can provide better outcomes.
Resumo:
The aim of this study was to evaluate stress distribution of the peri-implant bone by simulating the biomechanical influence of implants with different diameters of regular or platform switched connections by means of 3-dimensional finite element analysis. Five mathematical models of an implant-supported central incisor were created by varying the diameter (5.5 and 4.5 mm, internal hexagon) and abutment platform (regular and platform switched). For the cortical bone, the highest stress values (rmax and rvm) were observed in situation R1, followed by situations S1, R2, S3, and S2. For the trabecular bone, the highest stress values (rmax) were observed in situation S3, followed by situations R1, S1, R2, and S2. The influence of platform switching was more evident for cortical bone than for trabecular bone and was mainly seen in large platform diameter reduction.
Resumo:
In pre-implantation embryos, lipids play key roles in determining viability, cryopreservation and implantation properties, but often their analysis is analytically challenging because of the few picograms of analytes present in each of them. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) allows obtaining individual phospholipid profiles of these microscopic organisms. This technique is sensitive enough to enable analysis of individual intact embryos and monitoring the changes in membrane lipid composition in the early stages of development serving as screening method for studies of biology and biotechnologies of reproduction. This article introduces an improved, more comprehensive MALDI-MS lipid fingerprinting approach that considerably increases the lipid information obtained from a single embryo. Using bovine embryos as a biological model, we have also tested optimal sample storage and handling conditions before the MALDI-MS analysis. Improved information at the molecular level is provided by the use of a binary matrix that enables phosphatidylcholines, sphingomyelins, phosphatidylserines, phosphatidylinositols and phosphoethanolamines to be detected via MALDI(±)-MS in both the positive and negative ion modes. An optimal MALDI-MS protocol for lipidomic monitoring of a single intact embryo is therefore reported with potential applications in human and animal reproduction, cell development and stem cell research. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biologia Animal - IBILCE
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Enfermagem (mestrado profissional) - FMB