58 resultados para attractive traps
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigate dynamical effects of a bright soliton in Bose-Einstein condensed (BEC) systems with local and smooth space variations of the two-body atomic scattering length. It includes a discussion about the possible observation of a new type of standing nonlinear atomic matter wave in cigar-type traps. A rich dynamics is observed in the interaction between the soliton and an inhomogeneity. By considering an analytical time-dependent variational approach and also full numerical simulation of one-dimensional and three-dimensional Gross-Pitaevskii equations, we study processes such as trapping, reflection and transmission of the bright matter soliton due to the impurity. We also derive conditions for the collapse of the bright solitary wave, considering a quasi-one-dimensional BEC with attractive local inhomogeneity.
Resumo:
Using the axially symmetric time-dependent Gross-Pitaevskii equation we study the Josephson oscillation of an attractive Bose-Einstein condensate (BEC) in a one-dimensional periodic optical-lattice potential. We find that the Josephson frequency is virtually independent of the number of atoms in the BEC and of the interatomic interaction (attractive or repulsive). We study the dependence of the Josephson frequency on the laser wave length and the strength of the optical-lattice potential. For a fixed laser wave length (795 nm), the Josephson frequency decreases with increasing strength as found in the experiment of Cataliotti [Science 293, 843 (2001)]. For a fixed strength, the Josephson frequency remains essentially unchanged for a reasonable variation of laser wave length around 800 nm. However, the Josephson oscillation is disrupted with the increase of laser wave length beyond 2000 nm leading to a collapse of a sufficiently attractive BEC. These features of a Josephson oscillation can be tested experimentally with present setups.
Resumo:
In the present report, we review recent investigations that we have conducted on the stability of atomic condensed systems, when the two-body interaction is attractive. In particular, the dynamics that occurs in the condensate due to nonconservative terms is considered in the context of an extension of the mean-field Gross-Pitaevskii approximation. Considering the relative intensity of the nonconservative parameters, chaotic and solitonic solutions are verified. Also discussed is the possibility of a liquid-gas phase transition in the presence of positive three-body elastic collisions.
Resumo:
The dynamics of a nonconservative Gross-Pitaevskii equation for trapped atomic systems with attractive two-body interaction is numerically investigated, considering wide variations of the nonconservative parameters, related to atomic feeding and dissipation. We study the possible limitations of the mean-field description for an atomic condensate with attractive two-body interaction, by defining the parameter regions, where stable or unstable formation can be found. The present study is useful and timely considering the possibility of large variations of attractive two-body scattering lengths, which may be feasible in recent experiments.
Resumo:
We study solitons in the condensate trapped in a double-well potential with far-separated wells, when the s-wave scattering length has different signs in the two parts of the condensate. By employing the coupled-mode approximation it is shown that there are unusual stable bright solitons in the condensate, with the larger share of atoms being gathered in the repulsive part. Such unusual solitons derive their stability from the quantum tunneling and correspond to the strong coupling between the parts of the condensate. The ground state of the system, however, corresponds to weak coupling between the condensate parts, with the larger share of atoms being gathered in the attractive part of the condensate.
Resumo:
The Gross-Pitaevskii equation for a Bose-Einstein condensate confined in an elongated cigar-shaped trap is reduced to an effective system of nonlinear equations depending on only one space coordinate along the trap axis. The radial distribution of the condensate density and its radial velocity are approximated by Gaussian functions with real and imaginary exponents, respectively, with parameters depending on the axial coordinate and time. The effective one-dimensional system is applied to a description of the ground state of the condensate, to dark and bright solitons, to the sound and radial compression waves propagating in a dense condensate, and to weakly nonlinear waves in repulsive condensate. In the low-density limit our results reproduce the known formulas. In the high-density case our description of solitons goes beyond the standard approach based on the nonlinear Schrodinger equation. The dispersion relations for the sound and radial compression waves are obtained in a wide region of values of the condensate density. The Korteweg-de Vries equation for weakly nonlinear waves is derived and the existence of bright solitons on a constant background is predicted for a dense enough condensate with a repulsive interaction between the atoms.
Resumo:
We study the Bose-Einstein condensation of an interacting gas with attractive interaction confined in a harmonic trap using a semiclassical two-fluid mean-field model. The condensed state is described by the converged numerical solution of the Gross-Pitaevskii equation. By solving the system of coupled equations of this model iteratively we obtain the converged results for the temperature dependencies of the condensate fraction, chemical potential, and internal energy for the Bose-Einstein condensate of Li-7 atoms. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Embora seja geralmente assumido que a agricultura influencia negativamente populações de anfíbios, existem poucos estudos sobre os efeitos dos cultivos agrícolas em anuros neotropicais. Visando contribuir para diminuir essa lacuna de conhecimento, no presente estudo buscamos verificar quais espécies de anuros estão presentes nos agrossistemas. Para isso, usamos dados de anuros capturados em armadilhas de queda, inicialmente proposto para o levantamento da fauna de opiliões em três agrossistemas (milho, soja e seringal). Nós registramos quatro espécies de anuros nas armadilhas de queda: Leptodactulus fuscus, L. mystacinus (Leptodactylidae), Eupemphix nattereri e Physalaemus cuvieri (Leiuperidae). Na plantação de milho foram registradas quatro espécies e 30 indivíduos, no seringal quatro espécies e 11 indivíduos e na plantação de soja três espécies e oito indivíduos. Nossos resultados mostram que os anuros estão presentes nos agrossistemas, principalmente espécies de anuros generalistas.
Resumo:
Foram estudadas a composição e diversidade de abelhas em uma área agrícola no município de Rio Claro, Estado de São Paulo, de maio de 2003 a junho de 2004, utilizando armadilha de Moericke. O local de coleta, uma área com 58,08 hectares, caracteriza-se pela produção de grãos e a prática de plantio direto, sendo que 70% da área de entorno é utilizada para o plantio de cana-de-açúcar. Foram coletadas 456 abelhas distribuídas em 20 gêneros, pertencentes às famílias Andrenidae (4,8%), Apidae (40,8%) e Halictidae (54,4%). Espécimes dos gêneros Dialictus (38%) e Diadasia (30%) foram predominantes nesta área. A diversidade de espécies avaliadas pelos índices de Shannon e Simpson foram H =1,88 e 1/D= 4.15, respectivamente, e o índice de Equitatibilidade de 0,61.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)