66 resultados para atmospheric ammonia
Resumo:
The high performance liquid chromatography (HPLC) technique was applied to measure phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activity in soybean (Glycine max L. Merril cv. BR16) roots. t-Cinnamate, the catalytic product of the PAL reaction was quantified at 275 nm by isocratic elution with methanol:water through an ODS(M) column. Comparative experiments were carried out with 1.0 mM ferulic acid, an inducer of PAL activity. The results suggest that liquid chromatography is a rapid and sensitive method to analyze PAL activity in non-purified extract.
Resumo:
The influence of the allelochemicals ferulic (FA) and vanillic (VA) acids on peroxidase (POD, EC 1.11.1.7) and phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activities and their relationships with phenolic acid (PhAs) contents and root growth of soybean (Glycine max (L.) Merr.) were examined. Three-day-old seedlings were cultivated in nutrient solution containing FA or VA (0.1 to 1 mM) for 48 h. Both compounds (at 0.5 and 1 mM) decreased root length (RL), fresh weight (FW) and dry weight (DW) and increased PhAs contents. At 0.5 and 1 mM, FA increased soluble POD activity (18% and 47%, respectively) and cell wall (CW)-bound POD activity (61% and 34%), while VA increased soluble POD activity (33% and 17%) but did not affect CW-bound POD activity. At I mM, FA increased (82%) while VA reduced (32%) PAL activities. The results are discussed on the basis of the role of these compounds on phenylpropanoid metabolism and root growth and suggest that the effects caused on POD and PAL activities are some of the many mechanisms by which allelochemicals influence plant growth.
Resumo:
Simultaneous effects of ferulic (FA) and vanillic (VA) acids on peroxidase (POD, EC 1.11.1.7) and phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activities on soybean (Glycine max (L.) MERR.) root growth were analyzed. Three-day-old seedlings were cultivated in nutrient solution containing FA or VA (0.5 mM; 1.0 mM or equimolar mixtures) for 48 h. Acting alone, both compounds (at 0.5 or 1.0 mM) decreased root length (RL), fresh weight (FW), dry weight (DW) and increased soluble POD and cell wall (CW)-bound POD activities. At 1.0 mM, FA increased (but VA decreased) the PAL activity. Acting simultaneously, the effects of the allelochemical interaction were lower than the sum of the effects of each compound tested separately, suggesting antagonism.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJETIVOS: estimar as correlações entre os níveis de poluentes atmosféricos e o número de internações por doença respiratória em crianças, em hospital universitário. MÉTODOS: trata-se de um estudo ecológico de série temporal. Os dados sobre poluentes atmosféricos foram obtidos junto à CETESB e os dados sobre internação hospitalar, junto ao SAME do Hospital Universitário de Taubaté, Brasil. O estudo se refere a dados e internação do ano de 2001. Para estudar as correlações dos valores dos poluentes entre si e entre as internações, utilizou-se da técnica de correlação de Pearson. Foram estimados os riscos relativos para internação por doença respiratória comparando os quartis dos agentes poluentes com os valores do primeiro quartil. A significância estatística adotada foi alfa = 5%. RESULTADOS: foram internadas 158 crianças com doença respiratória no ano de 2001 (30% do total de internações no ano). Os poluentes estiveram correlacionados entre si e houve correlação positiva, entre o número de internação e dióxido de enxofre e material particulado; houve aumento de 25% no risco de internação comparando o quarto quartil e o primeiro quartil. CONCLUSÕES: houve correlação positiva entre número de internações por doenças respiratórias e poluentes atmosféricos.
Resumo:
Neste trabalho foi avaliado o desempenho de filtros para dióxido de nitrogênio, buscando evitar perdas durante a amostragem de sulfetos orgânicos, provocadas por oxidantes atmosféricos. Diferentes compostos e misturas foram usadas para recobrir superfícies sólidas empregadas na preparação destes filtros. Um sistema automatizado de análise em fluxo foi utilizado para comparar a eficiência de retenção de dióxido de nitrogênio pelos filtros. Entre os materiais testados na preparação dos filtros, as melhores escolhas foram papel ou lã de vidro impregnados com a mistura de sulfato de ferro (II), ácido sulfúrico e ácido pirogalico e ainda os filtros feitos de papel impregnados com trietanolamina. Os resultados obtidos em laboratório com mistura de gás padrão de dimetilsulfeto e experimentos em campo confirmaram a qualidade dos filtros e indicaram que eles podem ser utilizados para evitar a oxidação de sulfetos orgânicos durante a sua amostragem.
Resumo:
A fluorometric technique based on a liquid drop excited from its interior by an optical fiber is described for the measurement of low concentrations of atmospheric hydrogen sulfide (H2S). A drop of alkaline fluorescein mercuric acetate (FMA) solution is suspended in a flowing air sample stream and serves as a renewable sensor. An optical fiber contained within the conduit that forms the drop, brings in the excitation beam; the fluorescence emission is measured by an inexpensive photodiode positioned close to the drop. As H2S in the sample is collected by the alkaline drop, it reacts rapidly with FMA resulting in a significant decrease in fluorescence intensity, proportional to the concentration of H2S sampled. The chemistry of this uniquely selective reaction has been well established for many years, the present technique permits a simple fast inexpensive near real-time measurement with very little reagent consumption. Even without prolonged sampling/preconcentration steps, limits of detection (LODs) in the double digit ppbv range is readily attainable. (C) 1997 Elsevier B.V. B.V.
Resumo:
An analytical method for the determination of aldicarb, and its two major metabolites, aldicarb sulfoxide and aldicarb sulfone in fruits and vegetables is described. Briefly the method consisted of the use of a methanolic extraction, liquid-liquid extraction followed by solid-phase extraction clean-up. Afterwards, the final extract is analyzed by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS). The specific fragment ion corresponding to [M-74](+) and the protonated molecular [M+K](+) ion were used for the unequivocal determination of aldicarb and its two major metabolites. The analytical performance of the proposed method and the results achieved were compared with those obtained using the common analytical method involving LC with post-column fluorescence detection (FL). The limits of detection varied between 0.2 and 1.3 ng but under LC-FL were slightly lower than when using LC-APCI-MS. However both methods permitted one to achieve the desired sensitivity for analyzing aldicarb and its metabolites in vegetables. The method developed in this work was applied to the trace determination of aldicarb and its metabolites in crop and orange extracts. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
A sensitive and affordable approach is described for the in-situ measurement of ambient formaldehyde. Air is sampled around a 100 microliter aqueous drop containing 3-methyl-2-benzothiazoline hydrazone. After a desired period of sampling (typ. 5 min) and a waiting period of 10 min for the reaction to be completed, a second reagent (FeCl3) is added to the drop by means of a conjoined conduit. A blue product is formed and is read after an additional 10 min of reaction by a fiber-optic/light emitting diode based photodetector. A fresh drop is then formed and the process begins anew. As demonstrated here, the limit of detection is similar to 6.25 mu g m(-3) HCHO but can be significantly improved by using longer sampling times and a sampling rate higher than 100 mi min(-1) used in most of this work. This is the first example of a chromogenic drop sensor that utilizes sequential reagent addition.
Resumo:
A simultaneous method for the trace determination of acidic, neutral herbicides and their transformation products in estuarine waters has been developed through an on-line solid-phase extraction method followed by liquid chromatography with diode array and mass spectrometric detection. An atmospheric pressure chemical ionization (APCI) interface was used in the negative ionization mode after optimization of the main APCI parameters. Limits of detection ranged from 0.1 to 0.02 ng/ml for 50 mi of acidified estuarine waters preconcentrated into polymeric precolumns and using time-scheduled selected ion monitoring mode. Two degradation products of the acidic herbicides (4-chloro-2-methylphenol and 2,4-dichlorophenol) did not show good signal response using APCI-MS at the concentration studied due to the higher fragmentor voltage needed for their determination For molinate and the major degradation product of propanil, 3,4-dichloroaniline, positive ion mode was needed for APCI-MS detection. The proposed method was applied to the determination of herbicides in drainage waters from rice fields of the Delta del Ebro (Spain). During the S-month monitoring of the herbicides, 8-hydroxybentazone and 4-chloro-2-methylphenoxyacetic acid were successively found in those samples. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper evaluates emissions to the atmosphere of biologically available nitrogen compounds in a region characterized by intensive sugar cane biofuel ethanol production. Large emissions of NH(3) and NO,, as well as particulate nitrate and ammonium, occur at the harvest when the crop is burned, with the amount of nitrogen released equivalent to similar to 35% of annual fertilizer-N application. Nitrogen oxides concentrations show a positive association with fire frequency, indicating that biomass burning is a major emission source, with mean concentrations of NO, doubling in the dry season relative to the wet season. During the dry season biomass burning is a source of NH3, with other sources (wastes, soil, biogenic) predominant during the wet season. Estimated NO(2)-N, NH(3)-N, NO(3)(-)-N and NH(4)(+)-N emission fluxes from sugar cane burning in a planted area,of ca. 2.2 x 10(6) ha are 11.0, 1.1, 0.2, and 1.2 Gg N yr(-1), respectively.